RAGflow分片策略与文档解析器(二)文档解析器DeepDoc

二、文档解析器DeepDoc

其实在我们选择切片方法的同时,还有一个很重要的一个设置文档解析器:DeepDoc。

不同格式和不同检索要求的大量文档,准确的分析成为一项极具挑战性的任务。DeepDoc 就是为了这个目的而诞生的。到目前为止,DeepDoc 中有两个组成部分:视觉处理和解析器。

parser解析器: 可以看到包括有如下的这些不同类型的文件解析器。

在这里插入图片描述

PDF、DOCX、EXCEL和PPT四种文档格式都有相应的解析器。最复杂的是PDF解析器,因为PDF具有灵活性。PDF解析器的输出包括:

  • 在PDF中有自己位置的文本块(页码和矩形位置)。
  • 带有PDF裁剪图像的表格,以及已经翻译成自然语言句子的内容。
  • 图中带标题和文字的图。

视觉处理: 包括了OCR、recognizer、LayoutRecognizer、TSR、init_in_out。

在这里插入图片描述

**OCR 。**由于许多文档都是以图像形式呈现的,或者至少能够转换为图像,因此OCR是文本提取的一个非常重要、基本,甚至通用的解决方案。

输入可以是图像或PDF的目录,或者单个图像、PDF文件。您可以查看文件夹 path_to_store_result ,其中有演示结果位置的图像,以及包含OCR文本的txt文件。

Recognizer: 接收图像→预处理→模型推理→后处理→返回识别结果(包含类型、边界框和置信度)。

这个代码似乎是用于文档分析的视觉组件,可能用于识别文档中的表格、文本框、标题等元素。

布局识别(Layout recognition)。 来自不同领域的文件可能有不同的布局,如报纸、杂志、书籍和简历在布局方面是不同的。只有当机器有准确的布局分析时,它才能决定这些文本部分是连续的还是不连续的,或者这个部分需要表结构识别(Table Structure Recognition,TSR)来处理,或者这个部件是一个图形并用这个标题来描述。我们有10个基本布局组件,涵盖了大多数情况:

  • 文本
  • 标题
  • 配图
  • 配图标题
  • 表格
  • 表格标题
  • 页头
  • 页尾
  • 参考引用
  • 公式

TSR(Table Structure Recognition,表结构识别)。数据表是一种常用的结构,用于表示包括数字或文本在内的数据。表的结构可能非常复杂,比如层次结构标题、跨单元格和投影行标题。除了TSR,我们还将内容重新组合成LLM可以很好理解的句子。TSR任务有五个标签:

  • 列标题

  • 行标题

  • 合并单元格

init_in_out 方法是一个用于初始化输入和输出的函数,主要功能是处理输入文件(图像或PDF)并准备相应的输出路径。这个函数在视觉识别流程中起到了准备数据的作用,为后续的识别过程提供了标准化的输入和输出路径。

三、总结

RagFlow在文档切片过程中提供了丰富的配置项供用户进行选择,大家在使用时也需要根据文档的内容和形式仔细进行选择。通过这些配置,可以看到提供的确实比Dify在知识管理上有一定的优势。后续在针对RAGflow的其他特性在进行介绍。


四、如何系统学习掌握AI大模型?

AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。

学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。

这里给大家精心整理了一份全面的AI大模型学习资源,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享

1. 成长路线图&学习规划

要学习一门新的技术,作为新手一定要先学习成长路线图方向不对,努力白费

这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。

在这里插入图片描述

2. 大模型经典PDF书籍

书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础(书籍含电子版PDF)

在这里插入图片描述

3. 大模型视频教程

对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识

在这里插入图片描述

4. 2024行业报告

行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。

在这里插入图片描述

5. 大模型项目实战

学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。

在这里插入图片描述

6. 大模型面试题

面试不仅是技术的较量,更需要充分的准备。

在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。

在这里插入图片描述

全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以微信扫描下方CSDN官方认证二维码,免费领取【保证100%免费

### 使用 GPU 加速 RAGFlow文档解析过程 为了实现 GPU 加速的文档解析,在 RAGFlow 中可以通过 Docker 和特定配置完成这一目标。以下是关于如何设置和优化的过程: #### 1. 安装依赖项 确保本地环境中安装了必要的工具,包括 NVIDIA CUDA 工具链以及支持 GPU 的驱动程序。这些组件对于启用 GPU 支持至关重要[^2]。 ```bash sudo apt-get update && sudo apt-get install -y nvidia-driver-<version> distribution=$(. /etc/os-release;echo $ID$VERSION_ID) \ && curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add - \ && curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | sudo tee /etc/apt/sources.list.d/nvidia-docker.list sudo apt-get update && sudo apt-get install -y nvidia-container-toolkit sudo systemctl restart docker ``` 上述脚本用于更新系统并安装 NVIDIA Container Toolkit,从而允许容器访问主机上的 GPU 资源[^3]。 --- #### 2. 下载 RAGFlow 并配置环境 克隆官方仓库到本地目录,并进入项目根路径执行初始化操作。此步骤还包括创建 `.env` 文件以定义运行所需的参数。 ```bash git clone https://github.com/your-repo/ragflow.git cd ragflow touch .env ``` 编辑 `.env` 文件时需指定 GPU 相关的内容,例如模型加载器 `OLLAMA_HOST` 或其他硬件绑定选项。 --- #### 3. 启动服务并通过日志验证状态 通过 `docker-compose-gpu.yml` 来部署整个架构,其中包含了针对 GPU 进行调整的服务实例化逻辑。具体命令如下所示: ```bash docker compose -f docker-compose-gpu.yml up --build -d ``` 随后可通过查看实时日志确认各模块是否正常工作,特别是负责处理文件索引的部分是否有错误提示。 ```bash docker logs -f ragflow-server ``` 如果发现任何异常情况,则按照报错信息逐一排查原因直至完全修复为止。 --- #### 4. 测试性能提升效果 最后一步就是衡量引入 GPU 后带来的效率改进程度。通常可以从以下几个方面入手评估差异显著否: - **吞吐量对比**:比较相同条件下分别采用 CPU 及 GPU 执行任务所需时间长短; - **资源利用率统计**:借助监控平台观察计算节点上各类设备负载水平变化趋势图谱; 实际测试表明当面对大规模复杂数据集时选用合适的硬件设施确实能够带来可观收益[^1]。 --- ### 总结 综上所述,要让 Ragflow 利用 GPU 实现更高效的文档分析流程主要涉及前期准备阶段(即软件栈搭建)、中期定制环节(比如修改默认行为使之更适合当前需求场景),还有后期调优部分(持续跟踪反馈不断迭代完善)。只要遵循以上指导原则就能顺利达成预期目的。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值