题目
T(T<=5)组样例,每次给出N(N<=500)个点,
M(M<=2500)条正权双向边,W(W<=200)条负权单向边,问是否存在负权环
思路来源
https://blog.csdn.net/forever_dreams/article/details/81161527
题解
两种bfs版SPFA判负环
①最短路更新一个点不会超过n次,如果一个点入队次数大于n,必有负环,
但最坏情况下,一个长度为n的环,每个负权环上的点都需被遍历n次,转n圈
②单源最短路,从源点到每个点的路径的长度不会超过n,如果有路径长于n,必有负环
该方法在长度为n的环下比①优,出现一个长度为n的点即跳出,转1圈
环长不大的时候,感觉二者差不多
dfs版SPFA的也可判环,但没环时容易TLE
代码1
#include<iostream>
#include<cstdio>
#include<vector>
#include<queue>
using namespace std;
#define fi first
#define se second
typedef pair<int,int> P;
const int INF=0x3f3f3f3f;
const int N=505;
int n,m,p,u,v,w;
int dis[N],in[N];
vector<P>E[N];
bool vis[N];
void add(int u,int v,int w)
{
E[u].push_back(P(v,w));
}
bool spfa(int s)//a-b>=c,add(b,a,c)
{
dis[s]=0;
queue<int>q;
q.push(s);
vis[s]=1;in[s]++;//当前在队列中
while(!q.empty())
{
int u=q.front();
q.pop();
vis[u]=0;
for(int i=0;i<E[u].size();++i)
{
int v=E[u][i].fi,w=E[u][i].se;
if(dis[v]>dis[u]+w)
{
dis[v]=dis[u]+w;
if(!vis[v])
{
q.push(v);
vis[v]=1;in[v]++;
if(in[v]>n)return 1;
}
}
}
}
return 0;
}
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
scanf("%d%d%d",&n,&m,&p);
for(int i=1;i<=n;++i)
{
dis[i]=INF;
vis[i]=in[i]=0;
E[i].clear();
}
for(int i=1;i<=m;++i)
{
scanf("%d%d%d",&u,&v,&w);
add(u,v,w);add(v,u,w);
}
for(int i=1;i<=p;++i)
{
scanf("%d%d%d",&u,&v,&w);
add(u,v,-w);
}
puts(spfa(1)?"YES":"NO");
}
return 0;
}
代码2(更优)
#include<iostream>
#include<cstdio>
#include<vector>
#include<queue>
using namespace std;
#define fi first
#define se second
typedef pair<int,int> P;
const int INF=0x3f3f3f3f;
const int N=505;
int n,m,p,u,v,w;
int dis[N],cnt[N];
vector<P>E[N];
bool vis[N];
void add(int u,int v,int w)
{
E[u].push_back(P(v,w));
}
bool spfa(int s)//a-b>=c,add(b,a,c)
{
dis[s]=0;
queue<int>q;
q.push(s);
vis[s]=1;cnt[s]=1;//当前在队列中
while(!q.empty())
{
int u=q.front();
q.pop();
vis[u]=0;
for(int i=0;i<E[u].size();++i)
{
int v=E[u][i].fi,w=E[u][i].se;
if(dis[v]>dis[u]+w)
{
dis[v]=dis[u]+w;
cnt[v]=cnt[u]+1;
if(cnt[v]>n)return 1;
if(!vis[v])
{
q.push(v);
vis[v]=1;
}
}
}
}
return 0;
}
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
scanf("%d%d%d",&n,&m,&p);
for(int i=1;i<=n;++i)
{
dis[i]=INF;
vis[i]=cnt[i]=0;
E[i].clear();
}
for(int i=1;i<=m;++i)
{
scanf("%d%d%d",&u,&v,&w);
add(u,v,w);add(v,u,w);
}
for(int i=1;i<=p;++i)
{
scanf("%d%d%d",&u,&v,&w);
add(u,v,-w);
}
puts(spfa(1)?"YES":"NO");
}
return 0;
}