poj3259 Wormholes(SPFA判环/SPFA判负环)

题目

T(T<=5)组样例,每次给出N(N<=500)个点,

M(M<=2500)条正权双向边,W(W<=200)条负权单向边,问是否存在负权环

思路来源

https://blog.csdn.net/forever_dreams/article/details/81161527

题解

两种bfs版SPFA判负环

①最短路更新一个点不会超过n次,如果一个点入队次数大于n,必有负环,

但最坏情况下,一个长度为n的环,每个负权环上的点都需被遍历n次,转n圈

 

②单源最短路,从源点到每个点的路径的长度不会超过n,如果有路径长于n,必有负环

该方法在长度为n的环下比①优,出现一个长度为n的点即跳出,转1圈

 

环长不大的时候,感觉二者差不多

dfs版SPFA的也可判环,但没环时容易TLE

代码1

#include<iostream>
#include<cstdio>
#include<vector>
#include<queue>
using namespace std;
#define fi first
#define se second
typedef pair<int,int> P;
const int INF=0x3f3f3f3f;
const int N=505;
int n,m,p,u,v,w;
int dis[N],in[N];
vector<P>E[N];
bool vis[N];
void add(int u,int v,int w)
{
	E[u].push_back(P(v,w));
}
bool spfa(int s)//a-b>=c,add(b,a,c)
{
	dis[s]=0;
	queue<int>q;
	q.push(s);	
	vis[s]=1;in[s]++;//当前在队列中 
	while(!q.empty())
	{
		int u=q.front();
		q.pop();
		vis[u]=0;
		for(int i=0;i<E[u].size();++i)
		{
			int v=E[u][i].fi,w=E[u][i].se;
			if(dis[v]>dis[u]+w)
			{
				dis[v]=dis[u]+w;
				if(!vis[v])
				{
					q.push(v);
					vis[v]=1;in[v]++;
					if(in[v]>n)return 1;
				}
			}
		}
	}
	return 0; 
}
int main()
{
	int T;
	scanf("%d",&T);
	while(T--)
	{
		scanf("%d%d%d",&n,&m,&p);
		for(int i=1;i<=n;++i)
		{
			dis[i]=INF;
			vis[i]=in[i]=0;
			E[i].clear();
		}
		for(int i=1;i<=m;++i)
		{
			scanf("%d%d%d",&u,&v,&w);
			add(u,v,w);add(v,u,w);
		}
		for(int i=1;i<=p;++i)
		{
			scanf("%d%d%d",&u,&v,&w);
			add(u,v,-w);
		}
		puts(spfa(1)?"YES":"NO");
 	} 
	return 0;
} 

代码2(更优)

#include<iostream>
#include<cstdio>
#include<vector>
#include<queue>
using namespace std;
#define fi first
#define se second
typedef pair<int,int> P;
const int INF=0x3f3f3f3f;
const int N=505;
int n,m,p,u,v,w;
int dis[N],cnt[N];
vector<P>E[N];
bool vis[N];
void add(int u,int v,int w)
{
	E[u].push_back(P(v,w));
}
bool spfa(int s)//a-b>=c,add(b,a,c)
{
	dis[s]=0;
	queue<int>q;
	q.push(s);	
	vis[s]=1;cnt[s]=1;//当前在队列中 
	while(!q.empty())
	{
		int u=q.front();
		q.pop();
		vis[u]=0;
		for(int i=0;i<E[u].size();++i)
		{
			int v=E[u][i].fi,w=E[u][i].se;
			if(dis[v]>dis[u]+w)
			{
				dis[v]=dis[u]+w;
				cnt[v]=cnt[u]+1;
				if(cnt[v]>n)return 1;
				if(!vis[v])
				{
					q.push(v);
					vis[v]=1;
				}
			}
		}
	}
	return 0; 
}
int main()
{
	int T;
	scanf("%d",&T);
	while(T--)
	{
		scanf("%d%d%d",&n,&m,&p);
		for(int i=1;i<=n;++i)
		{
			dis[i]=INF;
			vis[i]=cnt[i]=0;
			E[i].clear();
		}
		for(int i=1;i<=m;++i)
		{
			scanf("%d%d%d",&u,&v,&w);
			add(u,v,w);add(v,u,w);
		}
		for(int i=1;i<=p;++i)
		{
			scanf("%d%d%d",&u,&v,&w);
			add(u,v,-w);
		}
		puts(spfa(1)?"YES":"NO");
 	} 
	return 0;
} 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小衣同学

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值