SPFA判负环

本文介绍了SPFA算法,一种用于寻找图中单源最短路径的有效算法,并详细解释了其判别负环的功能。通过对比Bellman-Ford算法,阐述了SPFA算法的优化原理,并提供了两种实现方式:基于队列的广度优先搜索(BFS)和基于栈的深度优先搜索(DFS)。此外,文章还对比了这两种实现方式的优缺点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【SPFA】

在介绍判负环之前,我先简单介绍一下SPFA算法

(以下的内容摘自百度

首先呢,SPFA(Shortest Path Faster Algorithm)算法是求单源最短路径的一种算法,它有一个重要的功能是判负环(在差分约束系统中会得以体现)

我们先说一下松弛操作,它的原理是著名的定理:“三角形两边之和大于第三边”,在信息学中我们叫它三角不等式。若用 u 来松弛 v,就是判断是否 dis[ v ] > dis[ u ] + w[ u , v ],如果该式成立则将 dis[ v ] 更新到 dis[ u ] + w[ u , v ],否则不变

SPFA相当于是Bellman-Ford算法的一个优化版本,在Bellman-Ford算法中,很多松弛操作其实都是没有必要的,例如对于一条从 x 到 y 的边,如果连 x 都还没被松弛,那 y 肯定也还不能被 x 松弛,为了避免“用一个还没有被松弛的点去松弛另外的点”的情况,我们用一个队列来存储已经被松弛过的点,然后用队列里的点去松弛其他点,这就是SPFA算法的基本思想

下面是具体的操作:

我们先把起点加入队列中,每次取出队首元素 u,然后尝试松弛点 u 能到达的点 v,若点 v 能被松弛且点 v 还没有被加进队列里,那么我们就把点 v 入队,不断地这样操作,直到队列为空。这样的话,只要最短路存在,那么我们就一定能求出最短路

还有一个要注意的地方就是SPFA有时会被恶意数据卡掉,如果没有负边权的话还是建议使用Dijkstra

 

【bfs版】

首先我们要知道,对于一个不存在负环的图,从起点到任意一个点最短距离经过的点最多只有 n 个

这样的话,我们用 cnt[ i ] 表示从起点(假设就是 1)到 i 的最短距离包含点的个数,初始化 cnt[ 1 ] = 1,那么当我们能够用点 u 松弛点 v 时,松弛时同时更新 cnt[ v ] = cnt[ u ] + 1,若发现此时 cnt[ v ] > n,那么就存在负环

还有一种方法是记录每个点的入队次数,入队次数大于 n 就说明有负环,但是这样做一般都要比上面的方法慢。举个例子,在一个由 n 个点构成的负环中,这个方法要绕环 n 次,而上面的方法绕环 1 次就行了

代码(Yes 是存在负环,No 是不存在负环,图是联通的):

#include<queue>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define N 10005
#define M 20005
using namespace std;
int n,m,t,oo;
int v[M],w[M],next[M];
int d[N],cnt[N],first[N];
bool flag,vis[N];
void add(int x,int y,int z)
{
        t++;
        next[t]=first[x];
        first[x]=t;
        v[t]=y;
        w[t]=z;
}
bool SPFA(int s)
{
        int x,y,i,j;
        queue<int>q;
        memset(d,127,sizeof(d));
        memset(vis,false,sizeof(vis));
        while(!q.empty())  q.pop();
        d[s]=0;
        cnt[s]=1;
        q.push(s);
        vis[s]=true;
        while(!q.empty())
        {
                x=q.front();
                q.pop();
                vis[x]=false;
                for(i=first[x];i;i=next[i])
                {
                        y=v[i];
                        if(d[y]>d[x]+w[i])
                        {
                                d[y]=d[x]+w[i];
                                cnt[y]=cnt[x]+1;
                                if(cnt[y]>n)
                                  return false;
                                if(!vis[y])
                                {
                                        q.push(y);
                                        vis[y]=true;
                                }
                        }
                }
        }
        return true;
}
int main()
{
        int x,y,z,i;
        scanf("%d%d",&n,&m);
        for(i=1;i<=m;++i)
        {
	        scanf("%d%d%d",&x,&y,&z);
                add(x,y,z);
                add(y,x,z);
        }
        flag=SPFA(1);
        if(!flag)  printf("Yes\n");
        else  printf("No\n");
        return 0;
}

 

【dfs版】

基于 dfs 版的 SPFA 相当于是把"先进先出"的队列换成了"先进后出"的栈

也就是说,每次都以刚刚松弛过的点来松弛其他的点,如果能够松弛点 x 并且 x 还在栈中,那图中就有负环

一般来说的话,若存在负环,那么 dfs 会比 bfs 快

但是如果不存在负环,dfs 可能会严重影响求最短路的效率,要谨慎使用

代码:

#include<cstdio>
#include<cstring>
#include<algorithm>
#define N 10005
#define M 20005
using namespace std;
int n,m,t;
int d[N],first[N];
int v[M],w[M],next[M];
bool flag,vis[N];
void add(int x,int y,int z)
{
	t++;
	next[t]=first[x];
	first[x]=t;
	v[t]=y;
	w[t]=z;
}
void spfa(int x)
{
	int i,j;
	vis[x]=true;
	for(i=first[x];i;i=next[i])
	{
		j=v[i];
		if(d[j]>d[x]+w[i])
		{
			if(vis[j])
			{
				flag=false;
				return;
			}
			d[j]=d[x]+w[i];
			spfa(j);
		}
	}
	vis[x]=false;
}
int main()
{
	int x,y,z,i;
	scanf("%d%d",&n,&m);
	for(i=1;i<=m;++i)
	{
		scanf("%d%d%d",&x,&y,&z);
		add(x,y,z);
		add(y,x,z);
	}
	memset(d,127,sizeof(d));
	d[1]=0;
	flag=true;
	spfa(1);
	if(!flag)  printf("Yes");
	else  printf("No");
	return 0;
}

 

### SPFA算法检测的实现及原理 SPFA(Shortest Path Faster Algorithm)是一种用于解决单源最短路径问题的有效算法,尤其适用于含有权边但不包含的情况。然而,在实际应用中,如果图中存在SPFA可能陷入无限循,因此需要一种机制来检测这种特殊情况。 #### 的存在条件 指的是在一个图中存在一条回路,该回路上所有边的权重之和为数。由于每次经过这条回路都会使路径长度变得更小,理论上可以不断绕圈从而得到无穷小的距离值[^1]。 #### SPFA算法的工作方式 SPFA的核心思想是利用队列进行广度优先搜索(BFS),并通过松弛操作更新节点到起点之间的距离。具体来说,对于每一个从队列弹出的顶点u,遍历它所有的邻接点v,并尝试用当前已知的最佳路径加上(u,v)这条边的成本去改进到达v点的距离。一旦发现新的更优解,则将v重新放入队列等待进一步探索[^3]。 #### 检测的关键技术 尽管标准版SPFA不具备内置功能自动识别,但可以通过增加额外计数器变量`cnt[]`记录每个结点被访问(即入队)的最大次数来间接完成此任务: - **初始化阶段**: 设置数组 `dis[]` 表示各顶点至源点间的最小估计成本;设初值均为正无穷大(+∞),除了起始位置设置成零外(`dis[s]=0`)。另外定义辅助数组 `inQueue[]`,用来标记哪些顶点正处于队列之中以防重复插入相同元素浪费时间资源。 - **核心逻辑修改**: - 当某顶点再次进入队列前检查它的累计入队数目是否已经超过整个网络中的总定点数量V; 如果满足上述条件则立即终止运算并报告发现了不可接受状况—存在至少一个权闭合链表结构[^2]. 以下是具体的伪代码描述如何扩展基础版本以支持探测: ```python from collections import deque def spfa_with_negative_cycle_detection(graph, start_node, num_nodes): dis = [float('inf')] * (num_nodes + 1) cnt = [0] * (num_nodes + 1) in_queue = [False] * (num_nodes + 1) queue = deque() dis[start_node] = 0 queue.append(start_node) in_queue[start_node] = True while queue: u = queue.popleft() in_queue[u] = False for v, weight in graph[u]: if dis[v] > dis[u] + weight: dis[v] = dis[u] + weight if not in_queue[v]: cnt[v] += 1 # If a node is relaxed more than the number of nodes times, # then there must be a negative cycle. if cnt[v] >= num_nodes: return "Negative Cycle Detected" queue.append(v) in_queue[v] = True return "No Negative Cycles Found" ``` 在这个增强型函数里,我们引入了一个名为`cnt[]`的新列表跟踪各个节点经历过的放松迭代轮次。每当某个特定节点准备第二次加入工作序列之前都要先核查其对应统计数值是不是已经达到了预设界限——也就是等于总的节点个数N。如果是的话就意味着系统内部必然隐藏着某种形式上的面反馈闭现象发生,此时应该立刻停止后续计算动作并向外界发出警告信号表明遇到了非法情形[^4]。 ### 结论 综上所述,虽然原始形态下的SPFA并不自带针对形拓扑结构的有效甄别手段,不过借助简单的附加措施比如设立专门监控指标就可以轻松弥补这项缺陷进而构建更加健壮可靠的解决方案出来供人们日常开发实践当中选用。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值