AtCoder Beginner Contest 351 G. Hash on Tree(树剖维护动态dp 口胡题解)

题目

n(n<=2e5)个点,给定一个长为a的初始权值数组,

以1为根有根树,

树哈希值f计算如下:

(1)如果一个点u是叶子节点,则f[u]=a[u]

(2)否则,f[u]=a[u]+\prod_{v\epsilon son[u]}f[v]

q(q<=2e5)次点权修改,每次问修改之后根节点(点1)的树哈希值f

思路来源

qiuzx_代码

题解

新开一个口胡题解专栏,记录当前题目水平不在我能力范围之内

但是看别人的代码能看懂,自己写可能要调一万年的这种题,描述一下他是怎么写的

心得

动态 DP - OI Wiki

动态dp可以参考这篇,

基本是对于有根树树形dp,想动态获取根节点的dp值,dp值和树上点权相关,点权带修,

序列的动态dp,一般是线段树维护矩阵乘法(可广义换成其他运算)或线段树节点合并

树上版本,是树剖维护矩阵转移或者线段树节点

本题中,先树链剖分,求出重儿子,重链维护线段树

线段树上每个节点维护一个y=bx+a的点对(a,b),

其中,b是f值非零的轻儿子的f积,x是重儿子的f值(未知,待代入)

a是当前节点u的a[u]值 ,然后就能b1*(b2x+a2)+a1这么线段树往上合并了

递归到叶子的时候,由于叶子不存在重儿子,x值为0,

所以链头的f值,就是当线段树区间[l,r],

l为重链头的dfs序,r为叶子重链尾的dfs序时,这个区间节点对应的(a,b)中a的值

由于为0的值会对运算值有影响,并且儿子f值从一个0变成没有0的时候难以恢复之前的乘积,

所以单独记录0的个数,所以变更的时候,动态记录链头点的f值为0的儿子的数量

代码

qiuzx_代码

//ANMHLIJKTJIY!
#pragma GCC optimize(2)
#pragma GCC optimize("Ofast")
#pragma GCC optimize("inline","fast-math","unroll-loops","no-stack-protector")
#pragma GCC diagnostic error "-fwhole-program"
#pragma GCC diagnostic error "-fcse-skip-blocks"
#pragma GCC diagnostic error "-funsafe-loop-optimizations"
#include <bits/stdc++.h>
#define INF 1000000000
#define LINF 1000000000000000000
#define MOD 1000000007
#define mod 998244353
#define F first
#define S second
#define ll long long
#define N 200010
//#define getchar() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++)
using namespace std;
char buf[1<<23],*p1=buf,*p2=buf;
ll rint(){
	ll ret=0;
	char c=getchar();
	while(!isdigit(c)) c=getchar();
	while(isdigit(c)) ret=ret*10+(c-'0'),c=getchar();
	return ret;
}
ll ksm(ll x,ll y)
{
	ll ret=1;
	while(y>0)
	{
		if(y&1)
		{
			ret=(ret*x)%mod;
		}
		x=(x*x)%mod;
		y>>=1;
	}
	return ret;
}
struct Node{
	ll a,b;
	Node(){a=b=0;}
	Node(ll _a,ll _b){a=_a,b=_b;}
	Node operator + (const Node &x)const{
		return Node((a*x.b+x.a)%mod,(b*x.b)%mod);
	}
};
struct SegT{
	ll lo[N<<2],hi[N<<2],pa[N],pb[N];
	Node val[N<<2];
	void build(ll x,ll l,ll r)
	{
		lo[x]=l,hi[x]=r;
		if(l==r)
		{
			val[x]=Node(pa[l],pb[l]);
			return;
		}
		ll mid=(l+r)>>1,a=x<<1;
		build(a,l,mid);
		build(a|1,mid+1,r);
		val[x]=val[a|1]+val[a];
		return;
	}
	void update(ll x,ll l,Node v)
	{
		ll tl=lo[x],tr=hi[x];
		if(tl==tr)
		{
			val[x]=v;
			return;
		}
		ll mid=(tl+tr)>>1,a=x<<1;
		if(mid>=l)
		{
			update(a,l,v);
		}
		else
		{
			update(a|1,l,v);
		}
		val[x]=val[a|1]+val[a];
		return;
	}
	Node query(ll x,ll l,ll r)
	{
		ll tl=lo[x],tr=hi[x];
		if(l<=tl&&tr<=r)
		{
			return val[x];
		}
		ll mid=(tl+tr)>>1,a=x<<1;
		if(mid>=r)
		{
			return query(a,l,r);
		}
		if(mid<l)
		{
			return query(a|1,l,r);
		}
		return query(a|1,l,r)+query(a,l,r);
	}
}segt;
ll n,q,fa[N],a[N],b[N],f[N],num0[N],dfn[N],dcnt=0,tp[N],lw[N],sz[N],hson[N];
vector<ll> vt[N];
void predfs(ll x)
{
	ll i;
	sz[x]=1,hson[x]=-1;
	for(i=0;i<vt[x].size();i++)
	{
		predfs(vt[x][i]);
		sz[x]+=sz[vt[x][i]];
		if(hson[x]==-1||sz[hson[x]]<sz[vt[x][i]])
		{
			hson[x]=vt[x][i];
		}
	}
	return;
}
void dfs(ll x,bool ist=true)
{
	tp[x]=ist?x:tp[fa[x]];
	dfn[x]=++dcnt;
	b[x]=1;
	if(hson[x]!=-1)
	{
		dfs(hson[x],false);
		lw[x]=lw[hson[x]];
		f[x]=f[hson[x]];
	}
	else
	{
		lw[x]=x;
		f[x]=a[x];
		return;
	}
	ll i;
	for(i=0;i<vt[x].size();i++)
	{
		if(vt[x][i]!=hson[x])
		{
			dfs(vt[x][i]);
			f[x]=(f[x]*f[vt[x][i]])%mod;
			if(f[vt[x][i]])
			{
				b[x]=(b[x]*f[vt[x][i]])%mod;
			}
			else
			{
				num0[x]++;
			}
		}
	}
	f[x]=(f[x]+a[x])%mod;
	return;
}
ll calc(ll x)
{
	Node cur=segt.query(1,dfn[x],dfn[lw[x]]);
	return cur.a;
}
int main(){
	ll i,x,y;
	n=rint(),q=rint();
	for(i=1;i<n;i++)
	{
		fa[i]=rint()-1;
		vt[fa[i]].push_back(i);
	}
	fa[0]=-1;
	for(i=0;i<n;i++)
	{
		a[i]=rint();
	}
	predfs(0);
	dfs(0);
	for(i=0;i<n;i++)
	{
		segt.pa[dfn[i]]=a[i];
		segt.pb[dfn[i]]=num0[i]?0:b[i];
	}
	segt.build(1,1,n);
	while(q--)
	{
		x=rint()-1,y=rint();
		a[x]=y;
		segt.update(1,dfn[x],Node(a[x],num0[x]?0:b[x]));
		while(true)
		{
			ll pre=f[tp[x]];
			f[tp[x]]=calc(tp[x]);
			x=tp[x];
			if(fa[x]<0)
			{
				break;
			}
			if(pre)
			{
				b[fa[x]]=(b[fa[x]]*ksm(pre,mod-2))%mod;
			}
			else
			{
				num0[fa[x]]--;
			}
			if(f[x])
			{
				b[fa[x]]=(b[fa[x]]*f[x])%mod;
			}
			else
			{
				num0[fa[x]]++;
			}
			x=fa[x];
			segt.update(1,dfn[x],Node(a[x],num0[x]?0:b[x]));
		}
		printf("%lld\n",f[0]);
	}
	return 0;
}

  • 4
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
AtCoder Beginner Contest 134 是一场 AtCoder 的入门级比赛,以下是每道题的简要题解: A - Dodecagon 题目描述:已知一个正十二边形的边长,求它的面积。 解题思路:正十二边形的内角为 $150^\circ$,因此可以将正十二边形拆分为 12 个等腰三角形,通过三角形面积公式计算面积即可。 B - Golden Apple 题目描述:有 $N$ 个苹果和 $D$ 个盘子,每个盘子最多可以装下 $2D+1$ 个苹果,求最少需要多少个盘子才能装下所有的苹果。 解题思路:每个盘子最多可以装下 $2D+1$ 个苹果,因此可以将苹果平均分配到每个盘子中,可以得到最少需要 $\lceil \frac{N}{2D+1} \rceil$ 个盘子。 C - Exception Handling 题目描述:给定一个长度为 $N$ 的整数序列 $a$,求除了第 $i$ 个数以外的最大值。 解题思路:可以使用两个变量 $m_1$ 和 $m_2$ 分别记录最大值和次大值。遍历整个序列,当当前数不是第 $i$ 个数时,更新最大值和次大值。因此,最后的结果应该是 $m_1$ 或 $m_2$ 中较小的一个。 D - Preparing Boxes 题目描述:有 $N$ 个盒子和 $M$ 个物品,第 $i$ 个盒子可以放入 $a_i$ 个物品,每个物品只能放在一个盒子中。现在需要将所有的物品放入盒子中,每次操作可以将一个盒子内的物品全部取出并分配到其他盒子中,求最少需要多少次操作才能完成任务。 解题思路:首先可以计算出所有盒子中物品的总数 $S$,然后判断是否存在一个盒子的物品数量大于 $\lceil \frac{S}{2} \rceil$,如果存在,则无法完成任务。否则,可以用贪心的思想,每次从物品数量最多的盒子中取出一个物品,放入物品数量最少的盒子中。因为每次操作都会使得物品数量最多的盒子的物品数量减少,而物品数量最少的盒子的物品数量不变或增加,因此这种贪心策略可以保证最少需要的操作次数最小。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Code92007

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值