思路来源
优秀的组长哒哒哒
https://www.nowcoder.com/acm/contest/view-submission?submissionId=36142802
(红名白法师%%%)(代码风格真的好,不得不服QAQ)
题解
第一个人选择第i行,第二个人选择这行最大的值,问第二个人的客观收益是多少。
所以如果第二个人能取一行,第一个人就直接选和最小的行。
因为第二个人肯定是从这行最大的开始挑,以此类推。
挑完了之后只剩小的,此时再选这行,就限制了第二个人的收益。
在n*m的图里,选k个,
k/m是可以选完整的行的个数,但是k%m就不一定了。
事实上,我们能选k/m个完整的行,直接选那些全行sum最小的行就好了。
但很不幸,这个直接的思想,不完全正确。
比如,学长给了一个样例
2 3 4 (n m k)
7 6 6
20 1 1
诸如此类,如果我们先选7 6 6这行,那么就一定会选到20,总收益39。
所以应该选20 1 1这行,再选一个7,总收益29。
别多想了,枚举。
先枚举哪一行是余数行,
这一行最大的k%m个,被选走,
再选择剩下的k/m个和最小的行即可。
一点小证明
一行开始取之后,这行顺着取全取完m个数,一定比不同行分着取凑齐m个数更优。
因为从大到小降序,后面取的越来越小,而别的行先取是取大的。
这里举一个例子,n=2,m=6,k=6。
a1 a2 a3 a4 a5 a6 降序
b1 b2 b3 b4 b5 b6 降序
且a1+a2+a3+a4+a5+a6<b1+b2+b3+b4+b5+b6
即我们选a这行比选b这行更优
我们可以发现,
a1 a2 a3 a4 a5 a6(1)
b1 b2 b3 b4 b5 b6(2)
若想取a1 b1 b2 b3 b4 b5,
则可以构造一个a1 b1 b2 b3 b4 b5(3)
若可取,应该有b6<a1,否则(1)最大值都比(2)小。
那我们取(3),不如取(2);
取(2),不如取(1)。
看不懂口胡的话,严谨证明一下,
现在取a1到a6最优,设存在至少一种方式比它更优
不妨取a1 b1 b2 b3 b4 b5,
则有a1+b1+b2+b3+b4+b5<a1+a2+a3+a4+a5+a6,
则b1+b2+b3+b4+b5+b6<a2+a3+a4+a5+a6+b6①,
以下分两种情况,
若b6<=a1,则b1+b2+b3+b4+b5+b6<a1+a2+a3+a4+a5+a6,与a的和最小矛盾;
若b6>a1,b最小值比a最大值还要大,
从而有b1+b2+b3+b4+b5>a1+a2+a3+a4+a5>a2+a3+a4+a5+a6,
即a1+a2+a3+a4+a5+a6还是最小,
所以,不该取a1 b1 b2 b3 b4 b5
对任意一种构造方式,都有其对应构造证明。
因此,可以说明,一取应该取一行。
ans初始化0x7f7f7f7f才1e10 又为自己WA了几发 原来8e18都不会越界
代码
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <set>
#include <map>
#include <vector>
#include <stack>
#include <queue>
#include <functional>
const double INF=0x3f3f3f3f;
const int maxn=1e5+10;
const int mod=1e9+7;
const int MOD=998244353;
const double eps=1e-7;
typedef long long ll;
#define vi vector<int>
#define si set<int>
#define pli pair<ll,int>
#define pi acos(-1.0)
#define pb push_back
#define mp make_pair
#define lowbit(x) (x&(-x))
#define sci(x) scanf("%d",&(x))
#define scll(x) scanf("%lld",&(x))
#define sclf(x) scanf("%lf",&(x))
#define pri(x) printf("%d",(x))
#define rep(i,j,k) for(int i=j;i<=k;++i)
#define per(i,j,k) for(int i=j;i>=k;--i)
#define mem(a,b) memset(a,b,sizeof(a))
using namespace std;
int n,m,k;
ll a[1005],sum[1005][1005],ans,tmp;//第i行取到第几个
struct node
{
ll sum;
int pos;
};
node q[1005];
bool cmp(node a,node b)
{
return a.sum<b.sum;
}
bool qaq(ll a,ll b)
{
return a>b;
}
int main()
{
ans=8e18;
//printf("%lld\n",ans);
scanf("%d%d%d",&n,&m,&k);
rep(i,0,n-1)
{
rep(j,0,m-1)scanf("%lld",&a[j]);
sort(a,a+m,qaq);
rep(j,0,m-1)
{
if(!j)sum[i][j]=a[j];
else sum[i][j]=sum[i][j-1]+a[j];
}
q[i].pos=i;
q[i].sum=sum[i][m-1];
}
sort(q,q+n,cmp);
int num=k/m;
if(k%m==0)
{
ans=0;
rep(j,0,num-1)ans+=q[j].sum;
}
else
{
rep(i,0,n-1)
{
int pos=i;
tmp=0;
rep(j,0,n-1)
{
if(pos==q[j].pos)
{
tmp+=sum[pos][k%m-1];
break;
}
}
int cnt=0;
rep(j,0,n-1)
{
if(pos==q[j].pos)continue;
tmp+=q[j].sum;cnt++;
if(cnt==num)break;
}
ans=min(ans,tmp);
}
}
printf("%lld\n",ans);
return 0;
}