hdu6333 Harvest of Apples(莫队)

题目

t(t<=1e5)组询问,

每次给出n,m(1<=m<=n<=1e5),求\sum_{i=0}^{m}C_{n}^{i}(mod\ 10^{9}+7)

思路来源

HDU 6333 Harvest of Apples [ 莫队算法 ]_Originum的博客-CSDN博客

题解

n=2e5是O(n\sqrt{n})的极限,所以1e5还是可以莽一莽离线莫队,主要是O(1)转移

C_{n}^{m}=C_{n-1}^{m-1}+C_{n-1}^{m}的万能公式,具体数学里多次提到

S(n,m)=\sum_{i=0}^{m}C_{n}^{i},可以发现,

S(n,m+1)=\sum_{i=0}^{m}C_{n}^{i}+C_{n}^{m+1}=S(n,m)+C_{n}^{m+1}

S(n,m-1)=\sum_{i=0}^{m}C_{n}^{i}-C_{n}^{m}=S(n,m)-C_{n}^{m}

S(n+1,m)=\sum_{i=0}^{m}C_{n}^{i}+C_{n}^{i-1}=\sum_{i=0}^{m}C_{n}^{i}+\sum_{i=1}^{m}C_{n}^{i-1}= \sum_{i=0}^{m}C_{n}^{i}+\sum_{i=0}^{m-1}C_{n}^{i}=2*\sum_{i=0}^{m}C_{n}^{i}-C_{n}^{m}=2*S(n,m)-C_{n}^{m}

S(n-1,m),只需对上式,以n-1代n,变形一下就搞出来了

S(n-1,m)=(S(n,m)+C_{\, n-1}^{\, m})\, /\, 2,注意/2用*inv2

代码

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int mod=1e9+7; 
const int inv2=(mod+1)/2;
const int maxn=1e5;
const int N=maxn+5;
ll Finv[N],jc[N];
ll modpow(ll x,ll n,ll mod)
{
	ll res=1;
	for(;n;x=x*x%mod,n/=2)
	if(n&1)res=res*x%mod;
	return res;
}
void init()
{
	jc[0]=Finv[0]=1;
	for(int i=1;i<=maxn;++i)
	{
	 jc[i]=jc[i-1]*i;
	 if(jc[i]>=mod)jc[i]%=mod;
    }
	Finv[maxn]=modpow(jc[maxn],mod-2,mod);
	for(int i=maxn-1;i>=1;--i)
	{
	 Finv[i]=Finv[i+1]*(i+1);
	 if(Finv[i]>=mod)Finv[i]%=mod;
    }
}
ll C(ll n,ll m)
{
	if(m<0||m>n)return 0;
	return jc[n]*Finv[n-m]%mod*Finv[m]%mod;
}
int t,l,r,mx;
int pos[N];//pos[i]代表i下标所在的块号
ll res;
int sz;//块的大小
struct node
{
	int l,r,id;
	ll ans;
}e[N];
bool cmp1(node a,node b)
{
	if(pos[a.l]==pos[b.l])
    {
        if(pos[a.l]&1)return a.r>b.r;
        else return a.r<b.r;
    }
	return a.l<b.l;
}
bool cmp2(node a,node b)
{
	return a.id<b.id;
}
int main()
{
		init();
		while(~scanf("%d",&t))
		{
		mx=0;
		for(int i=1;i<=t;++i)
		{
			scanf("%d%d",&e[i].r,&e[i].l);
			e[i].id=i;
			mx=max(mx,e[i].r);
		}
		sz=(int)sqrt(mx); 
		for(int i=1;i<=mx;++i)
		pos[i]=1+(i-1)/sz;
		sort(e+1,e+t+1,cmp1);
		l=1;r=1;res=2;
		for(int i=1;i<=t;++i)
		{
			for(;r<e[i].r;r++)res=(2*res-C(r,l)+mod)%mod;
			for(;r>e[i].r;r--)res=(res+C(r-1,l))%mod*inv2%mod;
			for(;l<e[i].l;l++)res=(res+C(r,l+1))%mod;
			for(;l>e[i].l;l--)res=(res-C(r,l)+mod)%mod;
			e[i].ans=res;
		}
		sort(e+1,e+t+1,cmp2);
		for(int i=1;i<=t;++i)
		printf("%lld\n",e[i].ans);
		}
		return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小衣同学

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值