题目链接:
http://acm.hdu.edu.cn/showproblem.php?pid=6333
重点就是图上画出来了
图片来自:https://blog.csdn.net/renzijing/article/details/81568403
算法是使用S(1,1)=2,开始计算的
同时使用离线
直接上代码:
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<cstdlib>
#include<iostream>
#include<iomanip>
#include<list>
#include<map>
#include<queue>
#include<sstream>
#include<stack>
#include<string>
#include<set>
#include<vector>
using namespace std;
#define PI acos(-1.0)
#define EPS 1e-8
#define MOD 1e9+7
#define LL long long
#define ULL unsigned long long //1844674407370955161
#define INT_INF 0x7f7f7f7f //2139062143
#define LL_INF 0x7f7f7f7f7f7f7f7f //9187201950435737471
const int dr[]={0, 0, -1, 1, -1, -1, 1, 1};
const int dc[]={-1, 1, 0, 0, -1, 1, -1, 1};
// ios::sync_with_stdio(false);
// 那么cin, 就不能跟C的 scanf,sscanf, getchar, fgets之类的一起使用了。
const int maxn=1e5+10;
const int mod=1e9+7;
struct node
{
LL n,m; //C(n,m)
LL p; //表示第几个输入的
}s[maxn];
LL fac[maxn]; //阶乘取模
LL inv[maxn]; //逆元取模
LL ans[maxn]; //存储最后的结果
LL block=sqrt(maxn); //辅助简化运算
LL qpow(LL x, LL y)
{
//快速幂求模
LL ret=1;
x%=mod;
while(y)
{
if(y&1)
ret=ret*x%mod;
x=x*x%mod;
y>>=1;
}
return ret;
}
void Init()
{
//求阶乘
fac[0]=1;
for(int i=1;i<maxn;++i)
fac[i]=fac[i-1]*i%mod;
//通过递推求n!
//我们可以利用invf[i]=invf[i+1]*(i+1)%p这个公式反递推得到1!~n!的逆元。
inv[maxn-1]=qpow(fac[maxn-1],mod-2);
for(int i=maxn-2;i>=0;--i)
inv[i]=inv[i+1]*(i+1)%mod;
}
LL C(LL n,LL m)
{
//阶乘和逆元对组合数求解公式
return fac[n]*inv[m]%mod*inv[n-m]%mod;
}
bool cmp(node x,node y)
{
if(x.n/block==y.n/block)
return x.m<y.m;
return x.n/block<y.n/block;
}
int main()
{
Init();
int t;
scanf("%d",&t);
for(int i=0;i<t;++i)
{
scanf("%lld%lld",&s[i].n,&s[i].m);
s[i].p=i;
}
sort(s,s+t,cmp); //排序从小的开始计算
LL l=1;
LL r=1;
LL now=2; //S(1,1)=2;
for(int i=0;i<t;++i)
{
while(l<s[i].n)//S(n-1,m)
{
l++;
now=(2*now%mod-C(l-1,r)+mod)%mod;
}
while(l>s[i].n)//S(n+1,m)
{
now=(now+C(l-1,r))%mod*inv[2]%mod;
l--;
}
while(r<s[i].m)//S(n,m+1)
{
r++;
now=(now+C(l,r))%mod;
}
while(r>s[i].m)//S(n,m-1)
{
now=(now-C(l,r)+mod)%mod;
r--;
}
ans[s[i].p]=now;//储存结果
}
for(int i=0;i<t;++i)
printf("%lld\n",ans[i]);
return 0;
}