hdu6333 Harvest of Apples 莫队

题目链接:

http://acm.hdu.edu.cn/showproblem.php?pid=6333

重点就是图上画出来了

图片来自:https://blog.csdn.net/renzijing/article/details/81568403 

算法是使用S(1,1)=2,开始计算的

同时使用离线

直接上代码:

#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<cstdlib>
#include<iostream>
#include<iomanip>
#include<list>
#include<map>
#include<queue>
#include<sstream>
#include<stack>
#include<string>
#include<set>
#include<vector>
using namespace std;
#define PI acos(-1.0)
#define EPS 1e-8
#define MOD 1e9+7
#define LL long long
#define ULL unsigned long long     //1844674407370955161
#define INT_INF 0x7f7f7f7f      //2139062143
#define LL_INF 0x7f7f7f7f7f7f7f7f //9187201950435737471
const int dr[]={0, 0, -1, 1, -1, -1, 1, 1};
const int dc[]={-1, 1, 0, 0, -1, 1, -1, 1};
// ios::sync_with_stdio(false);
// 那么cin, 就不能跟C的 scanf,sscanf, getchar, fgets之类的一起使用了。
const int maxn=1e5+10;
const int mod=1e9+7;
struct node
{
    LL n,m;         //C(n,m)
    LL p;           //表示第几个输入的
}s[maxn];
LL fac[maxn];   //阶乘取模
LL inv[maxn];   //逆元取模
LL ans[maxn];   //存储最后的结果
LL block=sqrt(maxn);    //辅助简化运算
LL qpow(LL x, LL y)
{
    //快速幂求模
    LL ret=1;
    x%=mod;
    while(y)
    {
        if(y&1)
            ret=ret*x%mod;
        x=x*x%mod;
        y>>=1;
    }
    return ret;
}
void Init()
{
    //求阶乘
    fac[0]=1;
    for(int i=1;i<maxn;++i)
        fac[i]=fac[i-1]*i%mod;
    //通过递推求n!
    //我们可以利用invf[i]=invf[i+1]*(i+1)%p这个公式反递推得到1!~n!的逆元。
    inv[maxn-1]=qpow(fac[maxn-1],mod-2);
    for(int i=maxn-2;i>=0;--i)
        inv[i]=inv[i+1]*(i+1)%mod;
}
LL C(LL n,LL m)
{
    //阶乘和逆元对组合数求解公式
    return fac[n]*inv[m]%mod*inv[n-m]%mod;
}
bool cmp(node x,node y)
{
    if(x.n/block==y.n/block)
        return x.m<y.m;
    return x.n/block<y.n/block;
}
int main()
{
    Init();
    int t;
    scanf("%d",&t);
    for(int i=0;i<t;++i)
    {
        scanf("%lld%lld",&s[i].n,&s[i].m);
        s[i].p=i;
    }
    sort(s,s+t,cmp);    //排序从小的开始计算
    LL l=1;
    LL r=1;
    LL now=2;   //S(1,1)=2;
    for(int i=0;i<t;++i)
    {
        while(l<s[i].n)//S(n-1,m)
        {
            l++;
            now=(2*now%mod-C(l-1,r)+mod)%mod;
        }
        while(l>s[i].n)//S(n+1,m)
        {
            now=(now+C(l-1,r))%mod*inv[2]%mod;
            l--;
        }
        while(r<s[i].m)//S(n,m+1)
        {
            r++;
            now=(now+C(l,r))%mod;
        }
        while(r>s[i].m)//S(n,m-1)
        {
            now=(now-C(l,r)+mod)%mod;
            r--;
        }
        ans[s[i].p]=now;//储存结果
    }
    for(int i=0;i<t;++i)
        printf("%lld\n",ans[i]);
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值