基于NARX神经网络的多变量数据自回归预测(附带MATLAB代码)
数据自回归多变量预测是一种重要的时间序列分析方法,它可以用于预测多个变量的未来值。其中,NARX(Nonlinear Autoregressive with eXogenous inputs)神经网络是一种常用的模型,它结合了自回归和外部输入的影响,能够更准确地捕捉时间序列数据的动态特性。本文将介绍如何使用MATLAB实现基于NARX神经网络的多变量数据自回归预测,并提供相应的源代码。
首先,我们需要准备数据。假设我们有一个包含n个变量的时间序列数据集,其中每个变量有m个观测值。我们将数据集划分为训练集和测试集,用于训练和评估NARX神经网络模型的性能。
下面是MATLAB代码示例,用于生成示例数据集:
% 生成示例数据
n = 3; % 变量数目
m = 100