基于NARX神经网络的多变量数据自回归预测(附带MATLAB代码)

128 篇文章 ¥59.90 ¥99.00
本文介绍了基于NARX神经网络的多变量时间序列预测方法,阐述了如何在MATLAB中构建和训练模型,并提供了相关MATLAB代码示例,包括数据准备、模型定义与训练、预测与性能评估。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基于NARX神经网络的多变量数据自回归预测(附带MATLAB代码)

数据自回归多变量预测是一种重要的时间序列分析方法,它可以用于预测多个变量的未来值。其中,NARX(Nonlinear Autoregressive with eXogenous inputs)神经网络是一种常用的模型,它结合了自回归和外部输入的影响,能够更准确地捕捉时间序列数据的动态特性。本文将介绍如何使用MATLAB实现基于NARX神经网络的多变量数据自回归预测,并提供相应的源代码。

首先,我们需要准备数据。假设我们有一个包含n个变量的时间序列数据集,其中每个变量有m个观测值。我们将数据集划分为训练集和测试集,用于训练和评估NARX神经网络模型的性能。

下面是MATLAB代码示例,用于生成示例数据集:

% 生成示例数据
n = 3; % 变量数目
m = 100
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值