算法-Split Array into Fibonacci Sequence-数组拆分斐波那契数列

本文介绍了如何将给定数组通过回溯算法拆分成斐波那契序列,详细阐述了题目分析、剪枝策略和代码实现,并提供了复杂度分析。回溯过程中,关键在于穷举字符串前缀作为斐波那契数列的一部分,并利用剪枝条件限制搜索空间,确保结果符合整数范围及斐波那契数列定义。
摘要由CSDN通过智能技术生成

将数组拆分成斐波那契序列

1、题目描述

给定一个数字字符串 S,比如 S = "123456579",我们可以将它分成斐波那契式的序列 [123, 456, 579]。
形式上,斐波那契式序列是一个非负整数列表 F,且满足:
0 <= F[i] <= 2^31 - 1,(也就是说,每个整数都符合 32 位有符号整数类型);
F.length >= 3;
对于所有的0 <= i < F.length - 2,都有 F[i] + F[i+1] = F[i+2] 成立。
另外,请注意,将字符串拆分成小块时,每个块的数字一定不要以零开头,除非这个块是数字 0 本身。
返回从 S 拆分出来的任意一组斐波那契式的序列块,如果不能拆分则返回 []。

示例 1:
输入:"123456579"
输出:[123,456,579]
    
示例 2:
输入: "11235813"
输出: [1,1,2,3,5,8,13]

示例 3:
输入: "112358130"
输出: []
解释: 这项任务无法完成。
    
示例 4:
输入:"0123"
输出:[]
解释:每个块的数字不能以零开头,因此 "01""2""3"
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值