图像去雾算法:基于Matlab的暗通道先验

139 篇文章 40 订阅 ¥59.90 ¥99.00
本文详细介绍了如何使用Matlab实现图像去雾的暗通道先验算法。该方法基于自然图像中存在暗像素的观察,通过计算暗通道图像、估计全局大气光值、透射率及恢复无雾图像,实现从雾霾图像中恢复清晰视觉信息。提供的Matlab代码示例可作为基础进行参数调整和优化。
摘要由CSDN通过智能技术生成

图像去雾算法:基于Matlab的暗通道先验

引言:
图像去雾是计算机视觉领域中一个重要的任务,其目标是从含有雾霾的图像中恢复出清晰的视觉信息。暗通道先验是一种常用的图像去雾方法,它基于一个观察到的现象:在大多数户外自然图像中,至少有一个像素的RGB通道值在无雾情况下是接近于零的。本文将介绍基于Matlab的暗通道图像去雾算法,并提供相应的源代码。

算法步骤:

  1. 读取输入图像
    使用Matlab的imread函数读取待去雾的图像,将其存储为一个三维矩阵,表示图像的红、绿、蓝三个通道。

  2. 计算暗通道图像
    对于每个像素,暗通道图像中的像素值是该像素在所有颜色通道上的最小值。计算暗通道图像可以使用以下代码:

    img_dark = min(img, [], 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值