C++:利用回溯搜索算法解决二元决策问题

111 篇文章 8 订阅 ¥59.90 ¥99.00
本文介绍了如何使用C++的回溯搜索算法解决二元决策问题。回溯搜索是一种深度优先搜索策略,从初始状态开始尝试所有可能的决策路径,直至找到解决方案或穷尽所有可能性。文中提供了一个C++代码示例,通过递归遍历决策路径,分别考虑采取和不采取当前决策的情况,以找到所有可行的决策方案。
摘要由CSDN通过智能技术生成

C++:利用回溯搜索算法解决二元决策问题

二元决策问题是指给定一个决策集合,每个决策可分为采取和不采取两种情况,求出所有可行的决策方案。这是一个典型的组合优化问题,可以用回溯搜索算法进行求解。

回溯搜索是一种经典的深度优先搜索算法,其基本思想是从初始状态开始,逐步尝试所有可能的扩展方式,直到找到所需的解或者穷尽所有可能的情况。在搜索过程中,需要维护当前已选择的决策以及选择的状态,从而保证搜索的正确性。

下面是一个简单的利用回溯搜索算法解决二元决策问题的C++代码示例。假设我们已经定义了一个二元决策向量decisions,其中每个元素表示一个决策,值为0表示不采取,值为1表示采取。

#include <vector>
#include <iostream>

using namespace std;

// decisions 为给定的决策集合
vector<int> decisions;
// path 为当前的决策路径
vector<int> path;

void backtrack(int start) {
    // 遍历完所有决策,输出结果并返回
    if (start == decisions.size()) {
        for (int i = 0; i < path.size(); i++
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值