C++:利用回溯搜索算法解决二元决策问题
二元决策问题是指给定一个决策集合,每个决策可分为采取和不采取两种情况,求出所有可行的决策方案。这是一个典型的组合优化问题,可以用回溯搜索算法进行求解。
回溯搜索是一种经典的深度优先搜索算法,其基本思想是从初始状态开始,逐步尝试所有可能的扩展方式,直到找到所需的解或者穷尽所有可能的情况。在搜索过程中,需要维护当前已选择的决策以及选择的状态,从而保证搜索的正确性。
下面是一个简单的利用回溯搜索算法解决二元决策问题的C++代码示例。假设我们已经定义了一个二元决策向量decisions,其中每个元素表示一个决策,值为0表示不采取,值为1表示采取。
#include <vector>
#include <iostream>
using namespace std;
// decisions 为给定的决策集合
vector<int> decisions;
// path 为当前的决策路径
vector<int> path;
void backtrack(int start) {
// 遍历完所有决策,输出结果并返回
if (start == decisions.size()) {
for (int i = 0; i < path.size(); i++