基于HMM的非特定人孤立词语音识别
语音识别技术已经成为现代信息技术中不可或缺的一部分,在日常生活中也得到了广泛的应用。非特定人孤立词语音识别是语音识别技术的一个分支,主要应用于简单指令的识别,例如数字、颜色等等。
本文介绍了一种基于HMM(隐马尔可夫模型)的非特定人孤立词语音识别方法,并且附有MATLAB代码。该方法包含三个主要步骤:声学特征提取、模型训练和识别测试。
- 声学特征提取
声学特征提取是语音信号处理中非常重要的部分。在这里,我们采用MFCC(Mel频率倒谱系数)作为声学特征。具体流程如下:
(1)首先,将原始语音信号划分为若干帧,每帧长约20ms。
(2)对每帧进行加窗处理,通常使用汉明窗。
(3)通过FFT计算每帧的功率谱密度函数。
(4)根据人耳的听觉特性,将功率谱密度函数转换为Mel频率谱,即提取MFCC系数。
(5)使用Delta和Delta-Delta算法对MFCC系数进行扩展,得到39维的特征向量。
- 模型训练
在模型训练阶段,我们需要使用已经标注好的语音信号数据集来训练HMM模型。具体流程如下: