基于HMM的非特定人孤立词语音识别

本文介绍了基于HMM的非特定人孤立词语音识别方法,涉及声学特征提取(使用MFCC)、模型训练和识别测试。在MATLAB中,通过MFCC特征、HMM模型训练及Viterbi算法实现语音识别。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基于HMM的非特定人孤立词语音识别

语音识别技术已经成为现代信息技术中不可或缺的一部分,在日常生活中也得到了广泛的应用。非特定人孤立词语音识别是语音识别技术的一个分支,主要应用于简单指令的识别,例如数字、颜色等等。

本文介绍了一种基于HMM(隐马尔可夫模型)的非特定人孤立词语音识别方法,并且附有MATLAB代码。该方法包含三个主要步骤:声学特征提取、模型训练和识别测试。

  1. 声学特征提取

声学特征提取是语音信号处理中非常重要的部分。在这里,我们采用MFCC(Mel频率倒谱系数)作为声学特征。具体流程如下:

(1)首先,将原始语音信号划分为若干帧,每帧长约20ms。

(2)对每帧进行加窗处理,通常使用汉明窗。

(3)通过FFT计算每帧的功率谱密度函数。

(4)根据人耳的听觉特性,将功率谱密度函数转换为Mel频率谱,即提取MFCC系数。

(5)使用Delta和Delta-Delta算法对MFCC系数进行扩展,得到39维的特征向量。

  1. 模型训练

在模型训练阶段,我们需要使用已经标注好的语音信号数据集来训练HMM模型。具体流程如下:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值