光电测量仪(PPG)生物信号处理附Matlab代码

本文探讨了使用Matlab对光电测量仪(PPG)信号进行预处理、滤波、峰值检测和频域分析的方法,以提高监测心电图、血氧饱和度等的准确性。文中提供了一系列Matlab代码示例,包括基线漂移和直流偏移去除、滤波、峰值检测和频域分析,有助于理解PPG信号处理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

光电测量仪(PPG)生物信号处理附Matlab代码

光电测量仪(PPG)可以非侵入地测量人体皮肤表面的微小变化,被广泛应用于心电图、血氧饱和度、血压等生物信号的监测。本文将介绍使用Matlab对PPG信号进行预处理、滤波、峰值检测和频域分析等处理,并提供相应代码供读者参考。

  1. PPG信号预处理

PPG信号通常包含大量的高频噪声和基线漂移等,需要进行预处理以提高后续处理的准确性。通常采用基线漂移去除和直流偏移去除两种方法。

基线漂移去除:使用中值滤波或高斯滤波平滑PPG信号来估计其基线,然后将原始信号减去估计的基线即可去除基线漂移。

直流偏移去除:使用差分运算法或高通滤波器去除信号的直流偏移。

下面是基线漂移去除的Matlab代码示例:

ppg = load('ppg_data.mat'); % 导入PPG数据
Fs = 100; % 采样率为100Hz
N = length(ppg); % 信号长度
baseline = medfilt1(ppg, Fs/2); % 用中值滤波估计基线
ppg = ppg - baseline; % 基线漂移去除
  1. PPG信号滤波

PPG信号的高频噪声和低频干扰会影响后续峰值检测和频域分析等处理的准确性,因此需要进行滤波处理。常用的滤波方法包括低通滤波、高通滤波和带通滤波等。

下面是一个常用的二阶巴特沃斯低通滤波器的M

### 使用MATLAB进行生物信号处理 #### 1. 生物信号预处理 在生物信号处理中,预处理阶段至关重要。这一步骤通常涉及去噪和平滑化操作,以提高后续分析的质量。对于光电测量仪(PPG)信号而言,可以通过低通滤波器来减少高频噪声的影响[^2]。 ```matlab % 加载原始 PPG 数据 load('ppg_signal.mat'); % 假设数据存储在一个 .mat 文件中 fs = 60; % 采样频率 (Hz) % 设计一个巴特沃斯低通滤波器 [b, a] = butter(4, 5/(fs/2), 'low'); % 应用滤波器到信号上 filtered_ppg = filtfilt(b, a, ppg_signal); ``` #### 2. 特征提取与峰值检测 为了进一步理解生物信号特性,在完成初步清理之后还需要执行特征提取工作。针对 PPG 波形来说,识别每次心跳对应的峰位是一个重要环节。可以利用 `findpeaks` 函数自动定位这些显著点位置。 ```matlab % 查找所有局部极大值作为潜在的心跳事件标记 [peak_values, peak_indices] = findpeaks(filtered_ppg); % 绘制带有标注的图形展示结果 figure; plot(ppg_time_vector, filtered_ppg); hold on; stem(ppg_time_vector(peak_indices), peak_values, 'r', 'filled'); xlabel('Time(s)'); ylabel('Amplitude(mV)'); title('Detected Heartbeats from Filtered PPG Signal'); legend({'Filtered PPG','Heartbeat Peaks'}); hold off; ``` #### 3. 频域分析 除了时间序列上的直观表示外,转换至频谱视角同样有助于揭示隐藏模式。借助快速傅立叶变换(FFT),能够将时域内的波动映射成不同频率成分构成的能量分布图象[^1]。 ```matlab N = length(filtered_ppg); % 获取样本总数 Y = fftshift(fft(filtered_ppg)); % 计算 FFT 并移相中心化 frequencies = (-N/2:N/2-1)*(fs/N); % 构建对应频率轴向量 % 只取正半边显示即可 positive_frequencies = frequencies(N/2:end); magnitude_spectrum = abs(Y(N/2+1:end)); % 创建双坐标图表对比原信号及其幅度谱线型态 figure; subplot(2,1,1); plot(ppg_time_vector, filtered_ppg); xlabel('Time(s)'); ylabel('Amplitude(mV)'); title('Original Time Domain Representation of the Filtered PPG Signal'); subplot(2,1,2); semilogy(positive_frequencies, magnitude_spectrum,'LineWidth',1.5); xlabel('Frequency(Hz)'); ylabel('|X(f)| Magnitude Spectrum'); title('Magnitude Spectrum After Applying Fast Fourier Transform '); grid minor; ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值