“六度空间”理论又称作“六度分隔(Six Degrees of Separation)”理论。这个理论可以通俗地阐述为:“你和任何一个陌生人之间所间隔的人不会超过六个,也就是说,最多通过五个人你就能够认识任何一个陌生人。”如图1所示。
图1 六度空间示意图
“六度空间”理论虽然得到广泛的认同,并且正在得到越来越多的应用。但是数十年来,试图验证这个理论始终是许多社会学家努力追求的目标。然而由于历史的原因,这样的研究具有太大的局限性和困难。随着当代人的联络主要依赖于电话、短信、微信以及因特网上即时通信等工具,能够体现社交网络关系的一手数据已经逐渐使得“六度空间”理论的验证成为可能。
假如给你一个社交网络图,请你对每个节点计算符合“六度空间”理论的结点占结点总数的百分比。
输入格式:
输入第1行给出两个正整数,分别表示社交网络图的结点数N(1,表示人数)、边数M(≤,表示社交关系数)。随后的M行对应M条边,每行给出一对正整数,分别是该条边直接连通的两个结点的编号(节点从1到N编号)。
输出格式:
对每个结点输出与该结点距离不超过6的结点数占结点总数的百分比,精确到小数点后2位。每个结节点输出一行,格式为“结点编号:(空格)百分比%”。
输入样例:
10 9
1 2
2 3
3 4
4 5
5 6
6 7
7 8
8 9
9 10
输出样例:
1: 70.00%
2: 80.00%
3: 90.00%
4: 100.00%
5: 100.00%
6: 100.00%
7: 100.00%
8: 90.00%
9: 80.00%
10: 70.00%
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#define MAXN 10000
int BFS(int i,int N,int **G)
{
int q[MAXN+1],visit[MAXN+1],front,rear,count,level,last,tail,v,j;
memset(visit,0,sizeof(visit));
visit[i]=1;
front=rear=-1;
count=1;//计算六度空间的个数
level=0;//level计算层数,等于6时跳出
last=i;//last为上一层最后的顶点
q[++rear]=i;
while(front<rear)
{
v=q[++front];
for(j=1;j<=N;j++)
if(!visit[j]&&G[v][j]==1)
{
q[++rear]=j;
visit[j]=1;
count++;
tail=j;//tail是当前层的最后一个顶点
}
if(v==last)
{
level++;
last=tail;
}
if(6==level)
{
return count;
break;
}
}
return count;
}
int main()
{
int N,E,i,x,y,counter;
int **G;
scanf("%d %d",&N,&E);
G=(int**)malloc((N+1)*sizeof(int*));
for(i=0;i<=N;i++)
G[i]=(int*)malloc((N+1)*sizeof(int));
for(i=0;i<E;i++)
{
scanf("%d %d",&x,&y);
G[x][y]=G[y][x]=1;
}
for(i=1;i<=N;i++)
{
counter=BFS(i,N,G);
printf("%d: %.2f%%\n",i,(float)counter/N*100);
}
free(G);
}