PTA 数据结构与算法 7-7 六度空间

如有不对,不吝赐教
进入正题:
六度空间”理论又称作“六度分隔(Six Degrees of Separation)”理论。这个理论可以通俗地阐述为:“你和任何一个陌生人之间所间隔的人不会超过六个,也就是说,最多通过五个人你就能够认识任何一个陌生人。”如图1所示。

在这里插入图片描述
图1 六度空间示意图
“六度空间”理论虽然得到广泛的认同,并且正在得到越来越多的应用。但是数十年来,试图验证这个理论始终是许多社会学家努力追求的目标。然而由于历史的原因,这样的研究具有太大的局限性和困难。随着当代人的联络主要依赖于电话、短信、微信以及因特网上即时通信等工具,能够体现社交网络关系的一手数据已经逐渐使得“六度空间”理论的验证成为可能。

假如给你一个社交网络图,请你对每个节点计算符合“六度空间”理论的结点占结点总数的百分比。

输入格式:
输入第1行给出两个正整数,分别表示社交网络图的结点数N(1<N≤10^4,表示人数)、边数M(≤33×N,表示社交关系数)。随后的M行对应M条边,每行给出一对正整数,分别是该条边直接连通的两个结点的编号(节点从1到N编号)。

输出格式:
对每个结点输出与该结点距离不超过6的结点数占结点总数的百分比,精确到小数点后2位。每个结节点输出一行,格式为“结点编号:(空格)百分比%”。

输入样例:

10 9
1 2
2 3
3 4
4 5
5 6
6 7
7 8
8 9
9 10

输出样例:

1: 70.00%
2: 80.00%
3: 90.00%
4: 100.00%
5: 100.00%
6: 100.00%
7: 100.00%
8: 90.00%
9: 80.00%
10: 70.00%

这道题就是一个图中的限制搜索问题,最好的方法是使用BFS,使用DFS会有一个问题,待会我把我的DFS问题代码放上来,然后再把用Floyd算法做的放上来,让你们见识下O(N^3)的时间复杂度 其实是懒得改了,一开始写的DFS,懒得改成BFS
这道题规规矩矩写BFS就好,别来些骚操作。。。

DFS代码:

#include<stdio.h>
#include<stdbool.h>

bool degree[10001][10001];   //直接使用全局变量
bool in[10001];
int number;

void InSix(int now,int length,int depth);

int main(void)
{
   
    int i
### PTA 数据结构算法 6-2 题目解析 针对PTA平台上编号为6-2的数据结构算法题目,虽然具体题干未在此提供,但从以往经验以及相似类型的练习来看,此类题目通常涉及基础数据结构的应用或是经典算法的实现。 #### 基于邻接表的图操作实践 对于涉及到图论的操作,如创建、遍历等基本功能,可以借鉴邻接表这种高效的存储形式[^2]。相较于传统的邻接矩阵表示方法,邻接表能够有效节省空间并提高访问效率,尤其是在稀疏图的情况下表现尤为突出。下面给出一段简单的Python代码用于构建基于链表的无向图: ```python class Node: def __init__(self, vertex=None, next=None): self.vertex = vertex self.next = next def add_edge(adj_list, u, v): node_u_to_v = Node(v, adj_list[u]) adj_list[u] = node_u_to_v node_v_to_u = Node(u, adj_list[v]) adj_list[v] = node_v_to_u ``` 这段程序展示了如何利用节点类`Node`定义边的关系,并通过`add_edge()`函数完成两个顶点之间的连接关系设置。 #### 应用场景举例:括号匹配验证 另一个可能的方向是关于括号匹配的问题,这属于典型的栈应用案例之一[^3]。为了检验一组括号序列是否合法闭合,可以通过入栈出栈的方式来进行判定。每当遇到左括号时将其压入堆栈;当碰到右括号,则尝试弹出最近一次存入的左括号并当前字符配对检查。如果最终整个过程中没有发生错误且栈为空,则说明该串中的所有括号都正确匹配。 ```python def is_valid_parentheses(s: str) -> bool: stack = [] mapping = {")": "(", "}": "{", "]": "["} for char in s: if char in mapping.values(): stack.append(char) elif char in mapping.keys(): top_element = stack.pop() if stack else '#' if mapping[char] != top_element: return False else: continue return not stack ``` 上述例子中实现了完整的括号合法性检测流程,适用于多种不同类型的括号组合情况。 #### 总结 综上所述,在面对PTA平台上的特定习题时,理解其背后的原理至关重要。无论是选择合适的数据结构还是设计有效的算法策略,都需要紧密结合实际需求展开思考。希望以上分享能帮助到正在探索这些问题的朋友!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值