AtCoder Beginner Contest 367 A~F

A.Shout Everyday(枚举)

题意:

A t C o d e r AtCoder AtCoder 王国,居民们每天都要在 A A A 点大声喊出他们对章鱼烧的热爱。

住在 A t C o d e r AtCoder AtCoder 王国的高桥每天 B B B 点睡觉, C C C 点起床( 24 24 24 小时钟)。他醒着的时候可以喊出对章鱼烧的爱,但睡着的时候却不能。判断他是否每天都能喊出对章鱼烧的爱。这里,一天有 24 24 24 小时,而他的睡眠时间小于 24 24 24 小时。

分析:

直接从 A A A枚举到 B B B,观察是否遍历到 C C C即可。

代码:

#include <bits/stdc++.h>
using namespace std;

int main() {
    int a, b, c;
    cin >> a >> b >> c;
    int flag = 1;
    for (; a != b; a = (a + 1) % 24) {
        if (a == c) {
            flag = 0;
            break;
        }
    }
    if (flag)
        cout << "Yes" << endl;
    else
        cout << "No" << endl;
    return 0;
}

B.Cut .0(模拟)

题意:

一个实数 X X X 已精确到小数点后第三位。
请在下列条件下打印实数 X X X

  • 小数部分不能有尾数 “0”。
  • 小数点后不能有多余的尾数。

分析:

按照题意模拟即可。

代码:

#include <bits/stdc++.h>
using namespace std;

int main() {
    string s;
    cin >> s;
    while (s.size() > 2 && s.back() == '0') {
        s.pop_back();
    }
    if (s.back() == '.') {
        s.pop_back();
    }
    cout << s << endl;
    return 0;
}

C.Enumerate Sequences(dfs)

题意:

按升序排列打印所有满足以下条件的长度为 N N N 的整数序列。

  • i i i 个元素介于 1 1 1 R i R_i Ri 之间。
  • 所有元素之和是 K K K 的倍数。

什么是序列的词序?如果下面的 1. 或 2. 成立,那么序列 A = ( A 1 , … , A ∣ A ∣ ) A = (A_1, \ldots, A_{|A|}) A=(A1,,AA) 在词法上小于 B = ( B 1 , … , B ∣ B ∣ ) B = (B_1, \ldots, B_{|B|}) B=(B1,,BB)

  1. ∣ A ∣ < ∣ B ∣ |A| < |B| A<B ( A 1 , … , A ∣ A ∣ ) = ( B 1 , … , B ∣ A ∣ ) (A_{1},\ldots,A_{|A|}) = (B_1,\ldots,B_{|A|}) (A1,,AA)=(B1,,BA) .
  2. 存在一个整数 1 ≤ i ≤ min ⁡ { ∣ A ∣ , ∣ B ∣ } 1\leq i\leq \min\{|A|,|B|\} 1imin{A,B} ,使得下面两个条件都成立:
    • ( A 1 , … , A i − 1 ) = ( B 1 , … , B i − 1 ) (A_{1},\ldots,A_{i-1}) = (B_1,\ldots,B_{i-1}) (A1,,Ai1)=(B1,,Bi1)
    • A i < B i A_i < B_i Ai<Bi

分析:

我们用 d f s dfs dfs按照要求依次搜索即可。

代码:

#include<bits/stdc++.h>
using namespace std;

int n, k, r[15], a[15];

void dfs(int x, int sum) {
    if (x == n + 1) {
        if (sum % k == 0) {
            for (int i = 1; i <= n; i++) {
                cout << a[i] << ' ';
            }
            cout << endl;
        }
        return;
    }
    for (int i = 1; i <= r[x]; i++) {
        a[x] = i;
        dfs(x + 1, sum + i);
    }
}

int main(){
    cin >> n >> k;
    for (int i = 1; i <= n; i++) {
        cin >> r[i];
    }
    dfs(1, 0);
    return 0;
}

D.Pedometer (思维)

题意:

一个湖周围有 N N N 个休息区。
这些休息区按顺时针顺序编号为 1 1 1 2 2 2 、…、 N N N
从休息区 i i i 顺时针走到休息区 i + 1 i+1 i+1 需要 A i A_i Ai 步(其中休息区 N + 1 N+1 N+1 指的是休息区 1 1 1 )。
从休息区 s s s 顺时针走到休息区 t t t s ≠ t s \neq t s=t )所需的最小步数是 M M M 的倍数。
( s , t ) (s,t) (s,t) 的可能对数。

分析:

s → t s \rightarrow t st有两种路径, s < t s < t s<t 时,我们有 p r e [ t ] − p r e [ s ] ≡ 0 ( m o d M ) pre[t] - pre[s] \equiv 0(mod M) pre[t]pre[s]0(modM)。当 s > t s > t s>t时,我们有 p r e [ t ] + p r e [ n ] − p r e [ s ] ≡ 0 ( m o d M ) pre[t] + pre[n] - pre[s] \equiv 0(mod M) pre[t]+pre[n]pre[s]0(modM)。移项后有 p r e [ t ] ≡ p r e [ s ] − p r e [ n ] ( m o d M ) pre[t] \equiv pre[s] - pre[n] (mod M) pre[t]pre[s]pre[n](modM)

代码:

#include <bits/stdc++.h>

using namespace std;
typedef long long LL;

int main() {
    int n, m;
    cin >> n >> m;
    vector<int> a(n);
    for (int i = 0; i < n; i++) {
        cin >> a[i];
    }
    vector<LL> pre(n + 1);
    for (int i = 0; i < n; i++) {
        pre[i + 1] = pre[i] + a[i];
    }
    LL ans = 0;
    map<int, int> mp;
    for (int i = 0; i < n; i++) {
        ans += mp[((pre[i] - pre[n]) % m + m) % m];
        ans += mp[pre[i] % m];
        mp[pre[i] % m]++;
    }
    cout << ans << endl;
    return 0;
}

E.Permute K times (倍增)

题意:

给你一个长度为 N N N 的序列 X X X ,其中每个元素都在 1 1 1 N N N 之间(包括首尾两个元素),以及一个长度为 N N N 的序列 A A A 。请输出在 A A A 上执行以下操作 K K K 次的结果。

  • B B B 替换 A A A ,使得 B i = A X i B_i = A_{X_i} Bi=AXi .

分析:

将题目转化成给定基环森林,点有点权。问从每个点出发,走了 k k k步后的点的点权。其中边是 i → x i i \rightarrow x_i ixi,点权 a i a_i ai。问第 k k k步后到达的点。我们预处理出倍增数组 t m p [ i ] [ j ] tmp[i][j] tmp[i][j]表示从点 j j j出发走了 2 i 2^i 2i 步后到达的点。然后对于每个点用倍增数组求 k k k次后的结果即可。

代码:

#include <bits/stdc++.h>
using namespace std;
typedef long long LL;

int main() {
    int n;
    LL k;
    cin >> n >> k;
    vector<vector<int> > tmp(64, vector<int>(n));
    for (int i = 0; i < n; i++) {
        int v;
        cin >> v;
        v--;
        tmp[0][i] = v;
    }
    vector<int> a(n);
    for (auto &x: a)
        cin >> x;
    for (int i = 1; i < 64; i++) {
        for (int j = 0; j < n; j++) {
            tmp[i][j] = tmp[i - 1][tmp[i - 1][j]];
        }
    }
    for (int i = 0; i < n; i++) {
        LL cnt = k;
        int cur = i;
        for (int j = 0; j < 64; j++) {
            if (cnt & (1LL << j)) {
                cur = tmp[j][cur];
            }
        }
        cout << a[cur] << " ";
        if (i == n - 1)
            cout << endl;
    }
    return 0;
}

F.Rearrange Query (哈希)

题意:

给你长度为 N N N 的正整数序列: A = ( A 1 , A 2 , … , A N ) A=(A_1,A_2,\ldots,A_N) A=(A1,A2,,AN) B = ( B 1 , B 2 , … , B N ) B=(B_1,B_2,\ldots,B_N) B=(B1,B2,,BN) .

给你 Q Q Q 个查询,让你按顺序处理。

  • 给定正整数 l i , r i , L i , R i l_i,r_i,L_i,R_i li,ri,Li,Ri 。如果可以重新排列子序列 ( A l i , A l i + 1 , … , A r i ) (A_{l_i} , A_{l_i+1}, \ldots , A_{r_i}) (Ali,Ali+1,,Ari) 以匹配子序列 ( B L i , B L i + 1 , … , B R i ) (B_{L_i} , B_{L_i+1} , \ldots , B_{R_i}) (BLi,BLi+1,,BRi) ,则输出Yes,否则输出 No

分析:

如果 A [ l , r ] A[l,r] A[l,r]序列的能通过重排得到 B [ L , R ] B[L,R] B[L,R],首先要满足 r − l = R − L r−l=R−L rl=RL,再观察每个数的出现次数是否一致。存在一个降低计算代价的必要条件是 s u m a [ l , r ] = s u m b [ L , R ] sum_a[l,r]=sum_b[L,R] suma[l,r]=sumb[L,R],但不是充分条件,会有误判的概率,
但是因为我们只要求数量相等,所以我们事先对所有数进行一个随机映射,那么这个误判的概率将极大减小。

代码:

#include <bits/stdc++.h>

using namespace std;
typedef long long LL;
typedef unsigned long long ULL;

ULL rnd() {
    static ULL A = 1 << 16 | 3, B = 333333331, C = 2341;
    return C = A * C + B;
}

int main() {
    int n, q;
    cin >> n >> q;
    vector<LL> a(n);
    vector<LL> b(n);
    map<LL, LL> mp;
    for (auto &x: a) {
        cin >> x;
        if (mp.find(x) == mp.end()) {
            mp[x] = rnd();
        }
    }
    for (auto &x: b) {
        cin >> x;
        if (mp.find(x) == mp.end()) {
            mp[x] = rnd();
        }
    }
    auto presum = [&](vector<LL> &a) {
        int n = a.size();
        vector<LL> s1(n + 1);
        for (int i = 0; i < n; ++i) {
            s1[i + 1] = (s1[i] + mp[a[i]]);
        }
        return s1;
    };
    auto pa1 = presum(a);
    auto pb1 = presum(b);
    auto sum = [&](vector<LL> &s, int l, int r) { return (s[r] - s[l - 1]); };
    auto check = [&](int l, int r, int L, int R) {
        auto PA = sum(pa1, l, r);
        auto PB = sum(pb1, L, R);
        return PA == PB;
    };
    while (q--) {
        int l, r, L, R;
        cin >> l >> r >> L >> R;
        if (r - l == R - L && check(l, r, L, R)) {
            cout << "Yes" << endl;
        } else {
            cout << "No" << endl;
        }
    }
    return 0;
}

赛后交流

在比赛结束后,会在交流群中给出比赛题解,同学们可以在赛后查看题解进行补题。

群号: 704572101,赛后大家可以一起交流做题思路,分享做题技巧,欢迎大家的加入。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值