A.Shout Everyday(枚举)
题意:
在 A t C o d e r AtCoder AtCoder 王国,居民们每天都要在 A A A 点大声喊出他们对章鱼烧的热爱。
住在 A t C o d e r AtCoder AtCoder 王国的高桥每天 B B B 点睡觉, C C C 点起床( 24 24 24 小时钟)。他醒着的时候可以喊出对章鱼烧的爱,但睡着的时候却不能。判断他是否每天都能喊出对章鱼烧的爱。这里,一天有 24 24 24 小时,而他的睡眠时间小于 24 24 24 小时。
分析:
直接从 A A A枚举到 B B B,观察是否遍历到 C C C即可。
代码:
#include <bits/stdc++.h>
using namespace std;
int main() {
int a, b, c;
cin >> a >> b >> c;
int flag = 1;
for (; a != b; a = (a + 1) % 24) {
if (a == c) {
flag = 0;
break;
}
}
if (flag)
cout << "Yes" << endl;
else
cout << "No" << endl;
return 0;
}
B.Cut .0(模拟)
题意:
一个实数
X
X
X 已精确到小数点后第三位。
请在下列条件下打印实数
X
X
X 。
- 小数部分不能有尾数 “0”。
- 小数点后不能有多余的尾数。
分析:
按照题意模拟即可。
代码:
#include <bits/stdc++.h>
using namespace std;
int main() {
string s;
cin >> s;
while (s.size() > 2 && s.back() == '0') {
s.pop_back();
}
if (s.back() == '.') {
s.pop_back();
}
cout << s << endl;
return 0;
}
C.Enumerate Sequences(dfs)
题意:
按升序排列打印所有满足以下条件的长度为 N N N 的整数序列。
- 第 i i i 个元素介于 1 1 1 和 R i R_i Ri 之间。
- 所有元素之和是 K K K 的倍数。
什么是序列的词序?如果下面的 1. 或 2. 成立,那么序列 A = ( A 1 , … , A ∣ A ∣ ) A = (A_1, \ldots, A_{|A|}) A=(A1,…,A∣A∣) 在词法上小于 B = ( B 1 , … , B ∣ B ∣ ) B = (B_1, \ldots, B_{|B|}) B=(B1,…,B∣B∣) :
- ∣ A ∣ < ∣ B ∣ |A| < |B| ∣A∣<∣B∣ 和 ( A 1 , … , A ∣ A ∣ ) = ( B 1 , … , B ∣ A ∣ ) (A_{1},\ldots,A_{|A|}) = (B_1,\ldots,B_{|A|}) (A1,…,A∣A∣)=(B1,…,B∣A∣) .
- 存在一个整数
1
≤
i
≤
min
{
∣
A
∣
,
∣
B
∣
}
1\leq i\leq \min\{|A|,|B|\}
1≤i≤min{∣A∣,∣B∣} ,使得下面两个条件都成立:
- ( A 1 , … , A i − 1 ) = ( B 1 , … , B i − 1 ) (A_{1},\ldots,A_{i-1}) = (B_1,\ldots,B_{i-1}) (A1,…,Ai−1)=(B1,…,Bi−1)
- A i < B i A_i < B_i Ai<Bi
分析:
我们用 d f s dfs dfs按照要求依次搜索即可。
代码:
#include<bits/stdc++.h>
using namespace std;
int n, k, r[15], a[15];
void dfs(int x, int sum) {
if (x == n + 1) {
if (sum % k == 0) {
for (int i = 1; i <= n; i++) {
cout << a[i] << ' ';
}
cout << endl;
}
return;
}
for (int i = 1; i <= r[x]; i++) {
a[x] = i;
dfs(x + 1, sum + i);
}
}
int main(){
cin >> n >> k;
for (int i = 1; i <= n; i++) {
cin >> r[i];
}
dfs(1, 0);
return 0;
}
D.Pedometer (思维)
题意:
一个湖周围有
N
N
N 个休息区。
这些休息区按顺时针顺序编号为
1
1
1 、
2
2
2 、…、
N
N
N 。
从休息区
i
i
i 顺时针走到休息区
i
+
1
i+1
i+1 需要
A
i
A_i
Ai 步(其中休息区
N
+
1
N+1
N+1 指的是休息区
1
1
1 )。
从休息区
s
s
s 顺时针走到休息区
t
t
t (
s
≠
t
s \neq t
s=t )所需的最小步数是
M
M
M 的倍数。
求
(
s
,
t
)
(s,t)
(s,t) 的可能对数。
分析:
当 s → t s \rightarrow t s→t有两种路径, s < t s < t s<t 时,我们有 p r e [ t ] − p r e [ s ] ≡ 0 ( m o d M ) pre[t] - pre[s] \equiv 0(mod M) pre[t]−pre[s]≡0(modM)。当 s > t s > t s>t时,我们有 p r e [ t ] + p r e [ n ] − p r e [ s ] ≡ 0 ( m o d M ) pre[t] + pre[n] - pre[s] \equiv 0(mod M) pre[t]+pre[n]−pre[s]≡0(modM)。移项后有 p r e [ t ] ≡ p r e [ s ] − p r e [ n ] ( m o d M ) pre[t] \equiv pre[s] - pre[n] (mod M) pre[t]≡pre[s]−pre[n](modM)
代码:
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
int main() {
int n, m;
cin >> n >> m;
vector<int> a(n);
for (int i = 0; i < n; i++) {
cin >> a[i];
}
vector<LL> pre(n + 1);
for (int i = 0; i < n; i++) {
pre[i + 1] = pre[i] + a[i];
}
LL ans = 0;
map<int, int> mp;
for (int i = 0; i < n; i++) {
ans += mp[((pre[i] - pre[n]) % m + m) % m];
ans += mp[pre[i] % m];
mp[pre[i] % m]++;
}
cout << ans << endl;
return 0;
}
E.Permute K times (倍增)
题意:
给你一个长度为 N N N 的序列 X X X ,其中每个元素都在 1 1 1 和 N N N 之间(包括首尾两个元素),以及一个长度为 N N N 的序列 A A A 。请输出在 A A A 上执行以下操作 K K K 次的结果。
- 用 B B B 替换 A A A ,使得 B i = A X i B_i = A_{X_i} Bi=AXi .
分析:
将题目转化成给定基环森林,点有点权。问从每个点出发,走了 k k k步后的点的点权。其中边是 i → x i i \rightarrow x_i i→xi,点权 a i a_i ai。问第 k k k步后到达的点。我们预处理出倍增数组 t m p [ i ] [ j ] tmp[i][j] tmp[i][j]表示从点 j j j出发走了 2 i 2^i 2i 步后到达的点。然后对于每个点用倍增数组求 k k k次后的结果即可。
代码:
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
int main() {
int n;
LL k;
cin >> n >> k;
vector<vector<int> > tmp(64, vector<int>(n));
for (int i = 0; i < n; i++) {
int v;
cin >> v;
v--;
tmp[0][i] = v;
}
vector<int> a(n);
for (auto &x: a)
cin >> x;
for (int i = 1; i < 64; i++) {
for (int j = 0; j < n; j++) {
tmp[i][j] = tmp[i - 1][tmp[i - 1][j]];
}
}
for (int i = 0; i < n; i++) {
LL cnt = k;
int cur = i;
for (int j = 0; j < 64; j++) {
if (cnt & (1LL << j)) {
cur = tmp[j][cur];
}
}
cout << a[cur] << " ";
if (i == n - 1)
cout << endl;
}
return 0;
}
F.Rearrange Query (哈希)
题意:
给你长度为 N N N 的正整数序列: A = ( A 1 , A 2 , … , A N ) A=(A_1,A_2,\ldots,A_N) A=(A1,A2,…,AN) 和 B = ( B 1 , B 2 , … , B N ) B=(B_1,B_2,\ldots,B_N) B=(B1,B2,…,BN) .
给你 Q Q Q 个查询,让你按顺序处理。
- 给定正整数
l
i
,
r
i
,
L
i
,
R
i
l_i,r_i,L_i,R_i
li,ri,Li,Ri 。如果可以重新排列子序列
(
A
l
i
,
A
l
i
+
1
,
…
,
A
r
i
)
(A_{l_i} , A_{l_i+1}, \ldots , A_{r_i})
(Ali,Ali+1,…,Ari) 以匹配子序列
(
B
L
i
,
B
L
i
+
1
,
…
,
B
R
i
)
(B_{L_i} , B_{L_i+1} , \ldots , B_{R_i})
(BLi,BLi+1,…,BRi) ,则输出
Yes
,否则输出No
。
分析:
如果
A
[
l
,
r
]
A[l,r]
A[l,r]序列的能通过重排得到
B
[
L
,
R
]
B[L,R]
B[L,R],首先要满足
r
−
l
=
R
−
L
r−l=R−L
r−l=R−L,再观察每个数的出现次数是否一致。存在一个降低计算代价的必要条件是
s
u
m
a
[
l
,
r
]
=
s
u
m
b
[
L
,
R
]
sum_a[l,r]=sum_b[L,R]
suma[l,r]=sumb[L,R],但不是充分条件,会有误判的概率,
但是因为我们只要求数量相等,所以我们事先对所有数进行一个随机映射,那么这个误判的概率将极大减小。
代码:
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
ULL rnd() {
static ULL A = 1 << 16 | 3, B = 333333331, C = 2341;
return C = A * C + B;
}
int main() {
int n, q;
cin >> n >> q;
vector<LL> a(n);
vector<LL> b(n);
map<LL, LL> mp;
for (auto &x: a) {
cin >> x;
if (mp.find(x) == mp.end()) {
mp[x] = rnd();
}
}
for (auto &x: b) {
cin >> x;
if (mp.find(x) == mp.end()) {
mp[x] = rnd();
}
}
auto presum = [&](vector<LL> &a) {
int n = a.size();
vector<LL> s1(n + 1);
for (int i = 0; i < n; ++i) {
s1[i + 1] = (s1[i] + mp[a[i]]);
}
return s1;
};
auto pa1 = presum(a);
auto pb1 = presum(b);
auto sum = [&](vector<LL> &s, int l, int r) { return (s[r] - s[l - 1]); };
auto check = [&](int l, int r, int L, int R) {
auto PA = sum(pa1, l, r);
auto PB = sum(pb1, L, R);
return PA == PB;
};
while (q--) {
int l, r, L, R;
cin >> l >> r >> L >> R;
if (r - l == R - L && check(l, r, L, R)) {
cout << "Yes" << endl;
} else {
cout << "No" << endl;
}
}
return 0;
}
赛后交流
在比赛结束后,会在交流群中给出比赛题解,同学们可以在赛后查看题解进行补题。
群号: 704572101,赛后大家可以一起交流做题思路,分享做题技巧,欢迎大家的加入。