Codeforces Round 966 (Div. 3) A~F

A.Primary Task(模拟)

题意:

德米特里在黑板上写下了 t t t个整数,这很好。他肯定自己丢失了其中一个重要的整数 n n n,这就不好了。

整数 n n n的形式是 10 10 10 ^ x x x( x ≥ 2 x\ge 2 x2),其中符号"^"表示指数化。出了点差错,德米特里在写重要整数时漏掉了符号"^"。例如,他应该写 105 105 105而不是 1 0 5 10^5 105,应该写 1019 1019 1019而不是 1 0 19 10^{19} 1019

德米特里想知道黑板上的整数哪些可能是重要整数,哪些不可能。

分析:

判断一下字符串前两位是不是10 ,除去前两位后后面的部分是不是一个大于等于2的数即可。

代码:

#include<bits/stdc++.h>

using namespace std;

void solve() {
    string s;
    cin >> s;
    if (s.length() <= 2) {
        cout << "NO" << endl;
        return;
    }
    if (!(s[0] == '1' && s[1] == '0')) {
        cout << "NO" << endl;
        return;
    }
    if (s[2] == '0') {
        cout << "NO" << endl;
        return;
    } else if (s[2] == '1') {
        if (s.length() == 3) {
            cout << "NO" << endl;
            return;
        }
    }
    cout << "YES" << endl;
}

int main() {
    int T;
    cin >> T;
    while (T--) {
        solve();
    }
    return 0;
}

B.Seating in a Bus(模拟)

题意:

在伯兰,一辆公共汽车由一排从 1 1 1 n n n n n n个座位组成。乘客上车时请务必遵守这些规则:

  • 如果车上没有空座位,乘客可以坐在任何空座位上;
  • 否则,乘客应坐在至少有一个邻座空闲的座位上。换句话说,只有当 i − 1 i-1 i1 i + 1 i+1 i+1中至少有一个座位有人时,乘客才能坐在索引为 i i i 1 ≤ i ≤ n 1\le i\le n 1in)的座位上。

今天有 n n n位乘客上车。数组 a a a按时间顺序记录了他们的座位号。也就是说, a 1 a_1 a1包含了第一位乘客的座位号, a 2 a_2 a2-第二位乘客的座位号,以此类推。

你知道数组 a a a的内容。确定是否所有乘客都遵循了建议。

例如,如果 n = 5 n=5 n=5 a a a=[ 5 , 4 , 2 , 1 , 3 5,4,2,1,3 5,4,2,1,3],那么建议就没有被遵守,因为第 3 3 3个乘客坐在了座位号为 2 2 2的座位上,而相邻的座位号为 1 1 1 3 3 3的座位是空闲的。

分析:

按题意模拟 ,每次判断相邻位置是否有乘客,如果都没有,那么返回false, 否则置 a [ x ] = 1 a[x]=1 a[x]=1, 继续判断下一个。

代码:

#include<bits/stdc++.h>
using namespace std;

void solve() {
    int n;
    cin >> n;
    vector<int> a(n + 2, 0);
    bool tag = true;
    for (int i = 1; i <= n; i++) {
        int x;
        cin >> x;
        if (i == 1) {
            a[x] = 1;
            continue;
        } else {
            if (a[x - 1] == 1 || a[x + 1] == 1) {
                a[x] = 1;
                continue;
            } else {
                tag = false;
            }
        }
    }
    if (tag)
        cout << "YES" << endl;
    else
        cout << "NO" << endl;
}

int main() {
    int T;
    cin >> T;
    while (T--) {
        solve();
    }
    return 0;
}

C.Numeric String Template(遍历)

题意:

克里斯蒂娜有一个由 n n n个整数组成的数组 a a a,称为模板。她还有 m m m个字符串,每个字符串都只由小写拉丁字母组成。这些字符串的编号从 1 1 1 m m m。她想检查哪些字符串与模板匹配。

如果同时满足以下所有条件,则认为字符串 s s s与模板匹配:

  • 字符串 s s s的长度等于数组 a a a中的元素个数。
  • 来自 a a a的相同数字对应于来自 s s s的相同符号。因此,如果是 a i = a j a_i=a_j ai=aj,那么 s i = s j s_i=s_j si=sj 1 ≤ i , j ≤ n 1\le i,j\le n 1i,jn)。
  • 来自 s s s的相同符号对应于来自 a a a的相同数字。因此,如果是 s i = s j s_i=s_j si=sj,那么 a i = a j a_i=a_j ai=aj 1 ≤ i , j ≤ n 1\le i,j\le n 1i,jn)。

换句话说,字符串中的字符与数组中的元素必须一一对应。

例如,如果 a a a=[ 3 , 5 , 2 , 1 , 3 3,5,2,1,3 3,5,2,1,3],那么字符串"abfda"与模板匹配,而字符串"afbfa"则不匹配,因为字符"f"同时对应数字 1 1 1 5 5 5

分析:

按顺序遍历字符串,用两个map给字母和数字建立起一一映射关系,然后进行判断即可。

代码:

#include<bits/stdc++.h>

typedef long long LL;
using namespace std;
const LL N = 10000005;
LL a[N];

void solve() {
    LL n;
    cin >> n;
    for (LL i = 0; i < n; i++) {
        cin >> a[i];
    }
    LL m;
    cin >> m;
    while (m--) {
        map<LL, char> q1;
        map<char, LL> q2;
        map<LL, bool> vis1;
        map<char, bool> vis2;
        string text;
        cin >> text;
        if (text.length() != n) {
            cout << "NO" << endl;
            continue;
        }
        bool ok = 1;
        for (LL i = 0; i < n; i++) {
            if (vis1[a[i]]) {
                if (text[i] != q1[a[i]]) {
                    cout << "NO" << endl;
                    ok = 0;
                    break;
                }
            }
            if (vis2[text[i]]) {
                if (a[i] != q2[text[i]]) {
                    cout << "NO" << endl;
                    ok = 0;
                    break;
                }
            }
            vis1[a[i]] = 1;
            vis2[text[i]] = 1;
            q1[a[i]] = text[i];
            q2[text[i]] = a[i];
        }
        if (ok) {
            cout << "YES" << endl;
        }
    }
}

int main() {
    LL T;
    cin >> T;
    while (T--) {
        solve();
    }
    return 0;
}

D.Right Left Wrong(双指针)

题意:

弗拉德发现了一个由 n n n个单元格组成的长条,从左到右的编号为 1 1 1 n n n。在第 i i i个单元格中,有一个正整数 a i a_i ai和一个字母 s i s_i si,其中所有的 s i s_i si不是"L"就是"R"。

弗拉德邀请您尝试进行任意数量(可能为零)的运算,以获得尽可能多的分数。

在一次操作中,您可以选择两个索引 l l l r r r 1 ≤ l < r ≤ n 1\le l\lt r\le n 1l<rn)。使得 s l s_l sl='L’和 s r s_r sr=‘R’,然后执行以下操作:

  • 为当前积分加上 a l + a l + 1 + ⋯ + a r − 1 + a r a_l+a_{l+1}+\dots+a_{r-1}+a_r al+al+1++ar1+ar分;
  • 将所有 l ≤ i ≤ r l\le i\le r lir s i s_i si替换为’.',这意味着您不能再选择这些索引。

例如,请考虑以下长条:

3 3 3 5 5 5 1 1 1 4 4 4 3 3 3 2 2 2
lrllrl

你可以先选择 l = 1 l=1 l=1 r = 2 r=2 r=2,然后在分数上加上 3 + 5 = 8 3+5=8 3+5=8

3 3 3 5 5 5 1 1 1 4 4 4 3 3 3 2 2 2
..LLLR

然后选择 l = 3 l=3 l=3 r = 6 r=6 r=6,再加上 1 + 4 + 3 + 2 = 10 1+4+3+2=10 1+4+3+2=10

3 3 3 5 5 5 1 1 1 4 4 4 3 3 3 2 2 2
......

因此,不可能再进行其他操作,最终得分是 18 18 18

最大得分是多少?

分析:

首先,由于 a [ i ] > = 1 a[i]>=1 a[i]>=1 ,所以我们总是希望尽可能多的取数。

我们希望每一个数字被取的次数尽可能多,那么最优的方案就是找到最左边的 L L L和最右边的 R R R,之后,再找到剩余的项中,最左边的 L L L和最右边的 R R R,以此类推,使用双指针往里缩,前缀和优化即可。

代码:

#include<bits/stdc++.h>

typedef long long LL;
using namespace std;
const LL N = 1e6 + 7;
LL a[N];

void solve() {
    LL n;
    cin >> n;
    for (LL i = 1; i <= n; i++)
        cin >> a[i];
    for (LL i = 1; i <= n; i++)
        a[i] += a[i - 1];
    string s;
    cin >> s;
    s = ' ' + s;
    LL l = 1, r = n;
    LL ans = 0;
    while (true) {
        while (s[l] != 'L' && l <= n) l++;
        while (s[r] != 'R' && r >= 1) r--;

        if (l <= r)
            ans += (a[r] - a[l - 1]);
        else
            break;
        l++, r--;
    }
    cout << ans << endl;
}

int main() {
    LL T;
    cin >> T;
    while (T--) {
        solve();
    }
    return 0;
}

E.Photoshoot for Gorillas(贪心)

题意:

你非常喜欢大猩猩,所以决定为它们组织一次摄影活动。大猩猩生活在丛林中。丛林是由 n n n行和 m m m列组成的网格。 w w w只大猩猩同意参加拍摄,索引为 i i i( 1 ≤ i ≤ w 1\le i\le w 1iw)的大猩猩的高度为 a i a_i ai。您希望将所有大猩猩放入网格单元格中,使每个单元格中的大猩猩数量不超过一只

这个排列的奇观等于边长为 k k k的所有子方格的奇观之和。

一个子方格的奇观等于该子方格中大猩猩的高度之和。

从所有合适的排列中,选择一个最大的排列。

分析:

本题考虑贪心,观察样例解释可以发现,中心的格子会被多次记录,所以我们只需要把大值从中心向外填充即可,因为用二维平面填充比较困难,所以我们就可以转化为记录每个格子被重复记录的个数,用优先队列将其储存,每次取队头与最高的猩猩乘积得值最后相加即可。

代码:

#include<bits/stdc++.h>
typedef long long LL;
using namespace std;

void solve() {
    int n, m, k, w;
    cin >> n >> m >> k >> w;
    vector<int> a(w);
    for (int i = 0; i < w; i++) {
        cin >> a[i];
    }
    sort(a.rbegin(), a.rend());
    vector<vector<int>> grid(n, vector<int>(m, 0));
    for (int i = 0; i <= n - k; i++) {
        for (int j = 0; j <= m - k; j++) {
            for (int x = i; x < i + k; x++) {
                for (int y = j; y < j + k; y++) {
                    grid[x][y]++;
                }
            }
        }
    }
    priority_queue<int> pq;
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < m; j++) {
            if (grid[i][j] > 0) {
                pq.push(grid[i][j]);
            }
        }
    }
    LL res = 0;
    for (int i = 0; i < w && !pq.empty(); i++) {
        int top = pq.top();
        pq.pop();
        res += static_cast<LL>(top) * a[i];
    }
    cout << res << endl;
}

int main() {
    int T;
    cin >> T;
    while (T--) {
        solve();
    }
    return 0;
}

F.Color Rows and Columns(动态规划)

题意:

你们有 n n n个矩形,其中 i i i个矩形的宽度为 a i a_i ai,高度为 b i b_i bi

您可以无限次地执行以下操作:选择一个矩形和其中的一个单元格,然后为其着色。

每次为任意一行或任意一列完全着色,你都可以获得 1 1 1分。你的任务是用尽可能少的操作获得至少 k k k分。

假设有一个长方形,宽为 6 6 6,高为 3 3 3。您可以通过对任意 4 4 4列中的所有单元格着色,从而执行 12 12 12次操作,得到 4 4 4分。

分析:

本题考虑动态规划,令 d p [ i ] dp[i] dp[i]代表获取 i i i分所需要的最少次数。

对于每一个矩阵, 获取得到分数与相应最少操作次数存放在 m e me me数组中。先枚举 j j j, 再枚举这个矩阵的得分 p p p,然后更新。

可得动态转移方程: d p [ j + p ] = m i n ( d p [ j + p ] , d p [ j ] + m e [ p ] ) dp[j+p]=min(dp[j+p],dp[j]+me[p]) dp[j+p]=min(dp[j+p],dp[j]+me[p])

代码:

#include<bits/stdc++.h>

using namespace std;
const int INF = 0x3f3f3f3f;

void solve() {
    int n, k;
    cin >> n >> k;
    vector<int> dp(k + 1, INF);
    dp[0] = 0;
    for (int i = 0; i < n; i++) {
        int a, b;
        cin >> a >> b;
        vector<int> me(k + 1, INF);
        me[0] = 0;
        int cnt = 0;
        int cost = 0;
        while (cnt < k && (a > 0 || b > 0)) {
            if (a < b)
                swap(a, b);
            cnt += 1;
            cost += b;
            a -= 1;
            me[cnt] = cost;
        }
        for (int j = k - 1; j >= 0; j--) {
            for (int p = 1; p <= k - j; p++) {
                dp[j + p] = min(dp[j + p], dp[j] + me[p]);
            }
        }
    }
    cout << (dp[k] == INF ? -1 : dp[k]) << endl;
}

int main() {
    int T;
    cin >> T;
    while (T--) {
        solve();
    }
    return 0;
}

赛后交流

在比赛结束后,会在交流群中给出比赛题解,同学们可以在赛后查看题解进行补题。

群号: 704572101,赛后大家可以一起交流做题思路,分享做题技巧,欢迎大家的加入。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值