【动态规划】 LeetCode #392 判断子序列

该博客讨论了如何使用动态规划解决LeetCode上的#392问题,即判断一个字符串是否为另一个字符串的子序列。通过建立dp矩阵,根据字符是否相等进行状态转移,最终得出结论。虽然存在更高效的解法,但作者选择动态规划以加深对该算法的理解。
摘要由CSDN通过智能技术生成

题目链接:

LeetCode #392 判断子序列

题目描述:

  1. 判断子序列
    给定字符串 s 和 t ,判断 s 是否为 t 的子序列。

你可以认为 s 和 t 中仅包含英文小写字母。字符串 t 可能会很长(长度 ~= 500,000),而 s 是个短字符串(长度 <=100)。

字符串的一个子序列是原始字符串删除一些(也可以不删除)字符而不改变剩余字符相对位置形成的新字符串。(例如,"ace"是"abcde"的一个子序列,而"aec"不是)。

示例 1:
s = “abc”, t = “ahbgdc”

返回 true.

示例 2:
s = “axc”, t = “ahbgdc”

返回 false.

后续挑战 :

如果有大量输入的 S,称作S1, S2, … , Sk 其中 k >= 10亿,你需要依次检查它们是否为 T 的子序列。在这种情况下,你会怎样改变代码?

解决方案:

字符串的问题八成都能用动态规划解决,也是在leetcode上的“动态规划”标签里,但是这个题用其他思想算法效率更高。我是为了巩固动态规划的思想才去找的题,所以今天我们硬着头皮用动态规划做一下。

参考编辑距离那道题,那个题设 dp[i][j] 为把长度为 i 的 word1 转换成长度为 j 的 word2 所使用的的最少操作数,文章链接:
【动态规划】 LeetCode #72 编辑距离

本题我们设 dp[i][j] 为长度为 i 的 s 是长度为 j 的 t 的子序列,是为 true,不是为 false,最后应该返回 dp[s.length()][t.length()]。

状态转移方程式:
若字符相等,dp[i][j] = dp[i-1][j-1]
若字符不等,dp[i][j] = dp[i][j-1]

初始化:第一行都为 1,因为空串一定是 t 的子序列;第一列除了 dp[0][0] 外都为 0。

我们以 s = ‘abc’,t = ‘ahbgdc’ 为例:('0’表示false,'1’表示true)
在这里插入图片描述
如果字符相等,如计算 dp[2][3] ,其含义为 ‘ab’ 是否是 ‘ahb’ 的子序列,由于字符 ‘b’ 相等,这个问题也就转化为了 ‘a’ 是否是 ‘ah’ 的子序列,即 dp[i][j] = dp[i-1][j-1]。

如果字符不相等,试想一下什么情况下长度为 i 的 s 串还能是长度为 j 的 t 串的子序列呢?最后一位已经不等了,要想是子序列,除非在此之前的t串已经包含了长度为 i 的 s 串的所有字符。比如 dp[1][3] 的含义是 ‘a’ 是否是 ‘ahb’ 的子序列,‘a’ != ‘b’,那么我们就去看是否在此之前已经满足 ‘a’ 是子序列。因为 ‘a’ 是 ‘ah’ 的子序列,所以 ‘a’ 也是 ‘ahb’ 的子序列,即 dp[i][j] = dp[i][j-1]。(只需要看左边相邻的数据,不需要再往前看,因为 ‘a’ 是 ‘a’ 的子序列,那么 ‘a’ 也一定是 ‘ah’ 的子序列。

代码:

/*
*参考编辑距离的题,那个题设 dp[i][j] 为把长度为 i 的 word1 转换成长度为 j 的 word2 所使用的的最少操作数
*本题我们设 dp[i][j] 为长度为 i 的 s 是长度为 j 的 t 的子序列,是为 1,不是为 0 
*最后返回的结果为 dp[s.length()][t.length()]
*若字符相等,dp[i][j] = dp[i-1][j-1]
*若字符不等,dp[i][j] = dp[i][j-1]
*初始化:第一行都为 1,因为空串一定是 t 的子序列;第一列除了 dp[0][0] 外都为 0
*/
class Solution {
    public boolean isSubsequence(String s, String t) {
        if(s.length() > t.length()) return false;
        if(s.length() == 0) return true;
        boolean[][] dp = new boolean[s.length() + 1][t.length() + 1];
        for(int j = 0; j <= t.length(); j++){
            dp[0][j] = true;//空串一定是 t 的子序列
        }
        for(int i = 1; i <= s.length(); i++){
            dp[i][0] = false;
            for(int j = 1; j <= t.length(); j++){
                if(s.charAt(i-1) == t.charAt(j-1)){
                    dp[i][j] = dp[i-1][j-1];
                }else{
                    dp[i][j] = dp[i][j-1];
                }
            }
        }
        return dp[s.length()][t.length()];
    }
}

注意,前面已经说过这个题用动态规划效率并不高,用两个指针等其他方式会更好,但是我是专门为了巩固动态规划的知识点才做的,所以采取了这个方法,这并不是本题的最优解,时间复杂度和空间复杂度都很高。
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值