978. 最长湍流子数组(动态规划)

/**
 * 978. 最长湍流子数组
 * @author wsq
 * @date 2020/10/20
	当 A 的子数组 A[i], A[i+1], ..., A[j] 满足下列条件时,我们称其为湍流子数组:
	若 i <= k < j,当 k 为奇数时, A[k] > A[k+1],且当 k 为偶数时,A[k] < A[k+1];
	或 若 i <= k < j,当 k 为偶数时,A[k] > A[k+1] ,且当 k 为奇数时, A[k] < A[k+1]。
	也就是说,如果比较符号在子数组中的每个相邻元素对之间翻转,则该子数组是湍流子数组。
	返回 A 的最大湍流子数组的长度。
	
	示例 1:
	输入:[9,4,2,10,7,8,8,1,9]
	输出:5
	解释:(A[1] > A[2] < A[3] > A[4] < A[5])

	示例 2:
	输入:[4,8,12,16]
	输出:2
	
	链接:https://leetcode-cn.com/problems/longest-turbulent-subarray
 */
package com.wsq.dp;

public class MaxTurbulenceSize {
	/**
	 *	动态规划
	 *	1.确定状态
	 *		f[i]表达以i结尾的最长湍流子数组的长度
	 *		最后一步:如果位置i与i-1的大小与位置i-2与i-1的大小关系一致时,f[i]可以看做在f[i-1]后追加一个元素
	 *			   否则,i只能与i-1或者自身组成一个子数组
	 *		子问题:计算f[i-1]的最长湍流子数组的长度
	 *	2.定义转移方程
	 *		f[i] = f[i-1] + 1 or 2 or 1
	 *	3.初始条件
	 *		f[0] = 1
	 *	4.计算顺序:
	 *		由于后续状态依赖之前的状态,所以从小到大计算
	 * @param A
	 * @return
	 */
	public int maxTurbulenceSize(int[] A) {
        int n = A.length;
        if(n == 1){
            return 1;
        }
        int[] f = new int[n];
        f[0] = 1;
        if(A[1] != A[0]){
            f[1] = 2;
        }else{
            f[1] = 1;
        }
        int max = f[1];
        for(int i = 2; i < n; i++){
            if((A[i] > A[i-1] && A[i-2] > A[i-1]) || (A[i] < A[i-1] && A[i-2] < A[i-1])){
                f[i] = f[i-1] + 1;        
            }else if(A[i] != A[i-1]){
                f[i] = 2;
            }else{
                f[i] = 1;
            }

            if(f[i] > max){
                max = f[i];
            }
        }
        return max;
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值