/**
* 978. 最长湍流子数组
* @author wsq
* @date 2020/10/20
当 A 的子数组 A[i], A[i+1], ..., A[j] 满足下列条件时,我们称其为湍流子数组:
若 i <= k < j,当 k 为奇数时, A[k] > A[k+1],且当 k 为偶数时,A[k] < A[k+1];
或 若 i <= k < j,当 k 为偶数时,A[k] > A[k+1] ,且当 k 为奇数时, A[k] < A[k+1]。
也就是说,如果比较符号在子数组中的每个相邻元素对之间翻转,则该子数组是湍流子数组。
返回 A 的最大湍流子数组的长度。
示例 1:
输入:[9,4,2,10,7,8,8,1,9]
输出:5
解释:(A[1] > A[2] < A[3] > A[4] < A[5])
示例 2:
输入:[4,8,12,16]
输出:2
链接:https://leetcode-cn.com/problems/longest-turbulent-subarray
*/
package com.wsq.dp;
public class MaxTurbulenceSize {
/**
* 动态规划
* 1.确定状态
* f[i]表达以i结尾的最长湍流子数组的长度
* 最后一步:如果位置i与i-1的大小与位置i-2与i-1的大小关系一致时,f[i]可以看做在f[i-1]后追加一个元素
* 否则,i只能与i-1或者自身组成一个子数组
* 子问题:计算f[i-1]的最长湍流子数组的长度
* 2.定义转移方程
* f[i] = f[i-1] + 1 or 2 or 1
* 3.初始条件
* f[0] = 1
* 4.计算顺序:
* 由于后续状态依赖之前的状态,所以从小到大计算
* @param A
* @return
*/
public int maxTurbulenceSize(int[] A) {
int n = A.length;
if(n == 1){
return 1;
}
int[] f = new int[n];
f[0] = 1;
if(A[1] != A[0]){
f[1] = 2;
}else{
f[1] = 1;
}
int max = f[1];
for(int i = 2; i < n; i++){
if((A[i] > A[i-1] && A[i-2] > A[i-1]) || (A[i] < A[i-1] && A[i-2] < A[i-1])){
f[i] = f[i-1] + 1;
}else if(A[i] != A[i-1]){
f[i] = 2;
}else{
f[i] = 1;
}
if(f[i] > max){
max = f[i];
}
}
return max;
}
}
978. 最长湍流子数组(动态规划)
最新推荐文章于 2024-11-02 09:55:19 发布