363. 矩形区域不超过 K 的最大数值和(二维前缀和,区域面积)

package com.heu.wsq.leetcode.prefix_sum;

/**
 * 363. 矩形区域不超过 K 的最大数值和
 * @author wsq
 * @date 2021/4/22
 * 给你一个 m x n 的矩阵 matrix 和一个整数 k ,找出并返回矩阵内部矩形区域的不超过 k 的最大数值和。
 * 题目数据保证总会存在一个数值和不超过 k 的矩形区域。
 *
 * 示例 1:
 * 输入:matrix = [[1,0,1],[0,-2,3]], k = 2
 * 输出:2
 * 解释:蓝色边框圈出来的矩形区域 [[0, 1], [-2, 3]] 的数值和是 2,且 2 是不超过 k 的最大数字(k = 2)。
 *
 * 示例 2:
 * 输入:matrix = [[2,2,-1]], k = 3
 * 输出:3
 * 
 * 链接:https://leetcode-cn.com/problems/max-sum-of-rectangle-no-larger-than-k
 */
public class MaxSumSubmatrix {
    public int maxSumSubmatrix(int[][] matrix, int k){
        int m = matrix.length;
        if (m == 0){
            return 0;
        }
        int n = matrix[0].length;
        // prefixSum[i][j]表示从(0, 0) 到 (i-1,j-1)构成的区域和
        int[][] prefixSum = new int[m + 1][n + 1];
        // 获取二维的前缀和
        for(int i = 1; i <= m; i++){
            for(int j = 1; j <= n; j++){
                prefixSum[i][j] = prefixSum[i-1][j] + prefixSum[i][j-1] - prefixSum[i-1][j-1] + matrix[i-1][j-1];
            }
        }
        int ans = Integer.MIN_VALUE;
        // 暴力求解,遍历每一个区域,找出不大于k的最大值区域
        // 点(x1, y1) 到 点(x2, y2)的区域和 = (x2, y2)的区域和 - (x1 - 1, y2) - (x2, y1 - 1) + (x1 - 1, y1 - 1)
        // 争取画图去理解
        for(int x1 = 1; x1 <= m; x1++){
            for(int y1 = 1; y1 <= n; y1++){
                for(int x2 = x1; x2 <= m; x2++){
                    for(int y2 = y1; y2 <= n; y2++){
                        int cur = prefixSum[x2][y2] - prefixSum[x1 - 1][y2] - prefixSum[x2][y1-1] + prefixSum[x1 - 1][y1 - 1];
                        if (cur <= k) {
                            ans = Math.max(ans, cur);
                        }
                    }
                }
            }
        }
        return ans;
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值