package com.heu.wsq.leetcode.prefix_sum;
/**
* 363. 矩形区域不超过 K 的最大数值和
* @author wsq
* @date 2021/4/22
* 给你一个 m x n 的矩阵 matrix 和一个整数 k ,找出并返回矩阵内部矩形区域的不超过 k 的最大数值和。
* 题目数据保证总会存在一个数值和不超过 k 的矩形区域。
*
* 示例 1:
* 输入:matrix = [[1,0,1],[0,-2,3]], k = 2
* 输出:2
* 解释:蓝色边框圈出来的矩形区域 [[0, 1], [-2, 3]] 的数值和是 2,且 2 是不超过 k 的最大数字(k = 2)。
*
* 示例 2:
* 输入:matrix = [[2,2,-1]], k = 3
* 输出:3
*
* 链接:https://leetcode-cn.com/problems/max-sum-of-rectangle-no-larger-than-k
*/
public class MaxSumSubmatrix {
public int maxSumSubmatrix(int[][] matrix, int k){
int m = matrix.length;
if (m == 0){
return 0;
}
int n = matrix[0].length;
// prefixSum[i][j]表示从(0, 0) 到 (i-1,j-1)构成的区域和
int[][] prefixSum = new int[m + 1][n + 1];
// 获取二维的前缀和
for(int i = 1; i <= m; i++){
for(int j = 1; j <= n; j++){
prefixSum[i][j] = prefixSum[i-1][j] + prefixSum[i][j-1] - prefixSum[i-1][j-1] + matrix[i-1][j-1];
}
}
int ans = Integer.MIN_VALUE;
// 暴力求解,遍历每一个区域,找出不大于k的最大值区域
// 点(x1, y1) 到 点(x2, y2)的区域和 = (x2, y2)的区域和 - (x1 - 1, y2) - (x2, y1 - 1) + (x1 - 1, y1 - 1)
// 争取画图去理解
for(int x1 = 1; x1 <= m; x1++){
for(int y1 = 1; y1 <= n; y1++){
for(int x2 = x1; x2 <= m; x2++){
for(int y2 = y1; y2 <= n; y2++){
int cur = prefixSum[x2][y2] - prefixSum[x1 - 1][y2] - prefixSum[x2][y1-1] + prefixSum[x1 - 1][y1 - 1];
if (cur <= k) {
ans = Math.max(ans, cur);
}
}
}
}
}
return ans;
}
}
363. 矩形区域不超过 K 的最大数值和(二维前缀和,区域面积)
最新推荐文章于 2025-04-25 08:09:49 发布