【No.15】蓝桥杯动态规划上|最少硬币问题|0/1背包问题|小明的背包1|空间优化滚动数组(C++)

DP初步:状态转移与递推

最少硬币问题
  • 有多个不同面值的硬币(任意面值)
  • 数量不限
  • 输入金额S,输出最少硬币组合。
    回顾用贪心求解硬币问题
    硬币面值1、2、5。支付13元,要求硬币数量最少
    贪心:
    (1)5元硬币,2个
    (2)2元硬币,1个
    (3)1元硬币,1个
    硬币面值1、2、4、5、6.,支付9元。
    贪心:
    (1)6元硬币,1个
    (2)2元硬币,1个
    (3)1元硬币,1个
    错误!
    答案是:5元硬币+4元硬币=2个
硬币问题的正解是动态规划

type = [1,5,10,25,50] 5种面值
定义数组Min[],记录最少硬币数量:
对输入的某个金额i,Min[i]是最少的硬币数量
第一步,只考虑1元面值的硬币

		金额i: 0,1,2,3,4,5
硬币数量`Min[]`:0,1,2,3,4
  • i=1元时,等价于:i = i - 1 = 0 元需要的硬币数量,加上1个1元硬币
  • i=2元时,等价于:i = i - 1 = 1 元需要的硬币数量,加上1个1元硬币

  • 在1元硬币的计算结果基础上,再考虑加上5元硬币的情况,从i=5开始就行了
    i=5元时,等价于
  1. i = i - 5 = 0元需要的硬币数量,加上1个5元硬币,Min[5] = 1
  2. 原来的Min[5] = 5
    取1和2的最小值,所以Min[5] = 1
    i = 6元时,等价于
  3. i = i - 5 = 1元需要的硬币数量,加上1个5元硬币,Min[6] = 2
  4. 原来的Min[6] = 6
    取1和2的最小值,所以Min[6] = 2
    Min[6] = Min[5] + 1
    递推关系:
    Min[i] = min (Min[i], Min[i - 5] + 1)
    继续处理其它面值硬币
#include <iostream>
#include <vector>
#include <limits.h>
using namespace std;

void solve(int s)
{
	int cnt = 5;   //5种硬币
	vector<int> type = {1,5,10,25,50};  //5种面值
	vector<int> Min(s+1, INT_MAX);   //初始化为无穷大
	Min[0] = 0;
	for (int j = 0; j < cnt; j ++)  //5种硬币
	{
		Min[i] = min (Min[i], Min[i - type[j]] + 1);
	}
	cout << Min[s] << endl;
}

int main()
{
	int s;
	cin >> s;
	solve(s);
	return 0;
}
DP的两个特征
  1. 重叠子问题
    在递归算法中,尤其是在解决最优化问题时,经常会遇到这样的情况:在求解大问题的过程中,我们需要多次求解规模更小、结构相同的问题。这些小问题被称为子问题。如果这些子问题在大问题求解过程中被重复计算多次,这将导致算法效率低下,因为大量时间被重复的子问题求解所占据。动态规划通过存储子问题的解(通常在二维数组中,称为DP表),确保每个子问题只计算一次,从而避免了重复计算。当需要某个子问题的解时,直接从DP表中查找,如果该子问题尚未解决,则先解决它,然后存储其解。
  2. 最优子结构
    这是动态规划能够成功解决许多问题的另一个关键特性。最优子结构是指一个问题的最优解包含其子问题的最优解。换句话说,如果我们能找到所有子问题的最优解,那么我们可以通过这些子问题的最优解来构建原问题的最优解。动态规划利用这个性质,通过自底向上的方式(即先解决最基础的子问题,然后逐步解决更大规模的子问题)来构建问题的最优解。
DP:记忆化

如果各个子问题不是独立的,如果能够保存已经解决的子问题的答案,在需要的时候再找出已求得的答案,可以避免大量的重复计算。
基本思路:用一个表记录所有已解决的子问题的答案,不管该问题以后是否被用到,只要它被计算过,就将其结果填入表中。
记忆化
解题步骤

  • 拆分问题
  • 定义状态(并找出初状态)
  • 状态转移方程
    一般的模型方法
  • 递归搜索法
  • 记忆化搜索(记忆化暴力)
  • 递推式法
最经典的DP问题:0/1背包

给定n种物品和一个背包,物品i的重量是 w i w_{i} wi其价值为 v i v_{i} vi,背包的容量为C.
背包问题:选择装入背包的物品,使得装入背包中物品的总价值最大
如果在选择装入背包的物品时,对每种物品i只有两种选择:装入背包或不装入背包,称为0/1耆包问题,
与装载问题不同的是,0/1背包不能只装一部分,要么选,要么不选。

x i x_{i} xi表示物品i装入背包的情况
x i x_{i} xi=0,表示物品i没有被装入背包
x i x_{i} xi=1,表示物品i被装入背包
约束条件:
∑ i = 1 n w i x i ≤ C x i ∈ { 0 , 1 } ( 1 ≤ i ≤ n ) \begin{array}{} \sum_{i=1}^{n}w_{i}x_{i} \le C \\ x_{i}\in \left \{ 0,1 \right \}(1 \le i \le n) \end{array} i=1nwixiCxi{0,1}(1in)
目标函数:
m a x ∑ i = 1 n v i x i max\sum_{i=1}^{n}v_{i}x_{i} maxi=1nvixi
例:有5个物品,重量分别是{2,2,6,5,4},价值分别为{6,3,5,4,6},背包容量为10
定义一个(n+1)(C+1)的二维表dp[][]
dp[i][j]表示把前i个物品装入背包中花费容量为j的情况下获得的最大价值

012345678910
0
1
2
3
4
5
填表,按只放第一个物品,只放前2个,只放前3个…一直到放完,这样的顺序考虑(从小问题扩展到大问题)
  1. 只装第一个物品(横向是递增的背包容量)
012345678910
000000000000
100666666666
2
3
4
5
  1. 只装前2个物品
    如果第2个物品重量比背包容量大,那么不能装第2个物品,情况和只装第1个一样
    如果第2个物品重量小于背包容量,那么
    1. 如果把物品2装进去(重量是2),那么相当于只把1装到(容量-2)的背包中
    2. 如果不装2,那么相当于只把1装到背包中
    3. 取1和2的最大值
012345678910
000000000000
100666666666
200669999999
3
4
5
  1. 只装前3个物品
    如果第3个物品重量比背包大,那么不能装第3个物品,情况和只装第1、2个一样。
    如果第3个物品重量小于背包容量,那么
    1. 如果把物品3装进去(重量是6),那么相当于只把1、2装到(容量-6)的背包中
    2. 如果不装3,那么相当于只把1、2装到背包中
    3. 取1和2的最大值
012345678910
000000000000
100666666666
200669999999
300669999111114
4
5

按这样的规律一行行填表,直到结束,现在回头考虑,装了那些物品,看最后一列,15>14,说明装了物品5,否则价值不会变化

012345678910
000000000000
100666666666
200669999999
300669999111114
4006699910111314
50066991212151515
小明的背包1

【题目描述】小明有一个容量为C的背包。这天他去商场购物,商场一共有N件物品,第i件物品的体积为 c i c_{i} ci,价值为 w i w_{i} wi。小明想知道在购买的物品总体积不超过C的情况下所能获得的最大价值为多少,请你帮他算算。
【输入描述】输入第1行包含两个正整数 N,C,表示商场物品的数量和小明的背包容量。
第 2~N+1 行包含 2个正整数c,w,表示物品的体积和价值。 1 ≤ N ≤ 1 0 2 1 \le N\le 10^2 1N102, 1 ≤ C ≤ 1 0 3 1 \le C\le 10^3 1C103, 1 ≤ w i , c i ≤ 1 0 3 1 \le w_{i},c_{i}\le 10^3 1wi,ci103
【输出描述】输出一行整数表示小明所能获得的最大价值。

DP状态设计

DP状态:定义二维数组dp[][],大小为NxC
dp[i][j]:把前i个物品(从第1个到第i个)装入容量为j的背包中获得的最大价值。
把每个dp[i][j]看成一个背包:背包容量为j,装1~i这些物品。最后得到的dp[N][C]就是问题的答案:把N个物品装进容量c的背包的最大价值。

DP状态转移方程

递推计算到dp[i][j]分2种情况:

  1. 第i个物品的体积比容量j还大,不能装进容量j的背包。那么直接继承前i-1个物品装进容量j的背包的情况即可:dp[i][j]= dp[i-1][j]
  2. 第i个物品的体积比容量j小,能装进背包。又可以分为2种情况:装或者不装第i个,
    1. 装第i个,从前i-1个物品的情况下推广而来,前i-1个物品是dp[i-1][j]。第i个物品装进背包后,背包容量减少c[i],价值增加w[i]。有:dp[i][j]= dp[i-1][j-c[i]] + w[i]
    2. 不装第i个,那么:dp[i][j] = dp[i-1][j]
    3. 取1和2的最大值
      状态转移方程
      dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - c[i]] + w[i])
代码
#include <bits/stdc++.h>
using namespace std;

const int N = 3011;
int w[N], c[N];   //物品的价值和体积
int dp[N][N];
int solve (int n, int C)
{
	for (int i = 1; i <= n; i++)
	{
		for (int j = 0; j <= C; j++)
		{
			if (C[i]>j)  //第i个物品比背包还大,装不了
				dp[i][j] = dp[i-1][j];
			else  //第i个物品可以装
				dp[i][j] = max(dp[i-1][j], dp[i-1][j-c[i]] + w[i]);
		}
	}
	return dp[n][C];
}
int main()
{
	int n, C;
	cin >> n >> C;
	for (int i = 1; i <= n; i++)
	{
		cin >> c[i] >> w[i];
	}
	memset(dp, 0, sizeof(dp));  //清0
	cout << solve(n, C);
	return 0;
}
空间优化:滚动数组

dp[][]优化成一维的dp[],以节省空间。
Dp[i][]是从上面一行dp[i-1]算出来的,第i行只跟第i-1行有关系,跟更前面的行没有关系!
dp[i][j]=max(dp[i-1][j],dp[i-1][j- c[i]]+ w[i])
优化:只需要两行dp[0][]dp[1][],用新的一行覆盖原来的一行,交替滚动。
经过优化,空间复杂度从O(NxC)减少为O©。

定义dp[2][j]:用dp[0][]dp[1][]交替滚动。
优点:逻辑清晰、编码不易出错,建议初学者采用这个方法
因为我们新一行的计算只与上一行有关所以,两行重复使用即可
伪代码:

int w[N], c[N];  //物品的价值和体积
int dp[2][N];    //替换int dp[][];
solve (int n, int C)
{
	now = 0, old = 1;  //now指向当前正在计算的一行,old指向旧的一行
	for (int i = 1; i <= n; i ++)
	{
		//交替滚动,now始终指向最新的一行
		if(c[i] > j)
			dp[now][j] = dp[old][j];
		else
			dp[now][j] = max(dp[old][j], dp[old][j - c[i]] + w[i]);
	}
	return dp[now][C];  //返回最新的行
}
自我滚动

因为状态转移每次只与上一层有关,所以用一个一维数组就可以。
继续精简:用一个一维的dp[]就够了,自己滚动自己。
dp[j]=dp[j-c[i]]+w[i]
为什么从大到小遍历,看dp[j]=dp[j-c[i]]+w[i]这一状态转移,是根据小的改大的,如果先把小的改了那小的还会被用到,数据就不对了,所以从大到小

for (int i = 0; i < n; i ++) //遍历每一件物品
{
	//遍历背包容量,表示在上一层的基础上,容量为j时,第i件物品装或不装的最优解
	for (int j = C; j >= c[i]; j --)
	{
		dp[j] = max(dp[j-c[i]] + w[i], dp[j]);
	}
}

j从小往大循环是错误的

0123456789
dp[j]'0066666666
dp[j]0066696666

例如i=2时,上图的dp[5]经计算得到dp[5]=9,把dp[5]更新为9。

0123456789
dp[j]'0066696666
dp[j]00666966126

下图中继续往后计算,当计算dp[8]时,得dp[8]=dp[5]'+3=9+3=12这个答案是错的。
错误的产生是滚动数组重复使用同一个空间引起的.

j从大到小循环是对的
例如i = 2时,首先计算最后的dp[9] = 9,它不影响前面状态的计算
1.

0123456789
dp[j]'0066666666
dp[j]0066666669
0123456789
dp[j]'0066666669
dp[j]0066666699
初始化细节

装满 dp[0]=0,其余赋值-INF;不装满全初始化为 0;
若一定要求装满:
则必有n=sum(c[i]) i ∈ i \in i已选集合
所以dp[n-sum(c[i])]= dp[0]
所以只有从dp[0]出发才合法,那就把其他的设成无穷小。

//装满
memset (dp, -0x3f, sizeof(dp));
dp[0] = 0;
//不装满
memset (dp, 0, sizeof(dp));
  • 26
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
好的,最少硬币问题可以使用动态规划来解决。假设我们有一个包含面额为 d1, d2, ..., dn 的硬币集合,以及要找零的金额为 amount。我们可以定义一个 dp 数组,其中 dp[i] 表示当要找零的金额为 i 时所需的最少硬币数量。 初始化 dp 数组为一个很大的数,例如 amount + 1,这样在后面的比较中就可以确保我们得到的答案是正确的。dp[0] 的值为 0,因为当要找零的金额为 0 时,不需要任何硬币。 接下来,我们可以使用以下递推公式来计算 dp 数组中的值: dp[i] = min(dp[i], dp[i - coin] + 1) 其中 coin 表示当前正在考虑的硬币面额,i - coin 表示剩余的金额,dp[i - coin] + 1 表示当前硬币面额所需的硬币数量加上剩余金额所需的最少硬币数量。 最终,dp[amount] 就是我们要求的最少硬币数量。为了输出每种硬币使用的数量,我们可以使用一个二维数组来记录每个金额所需的硬币数量。 下面是使用 Python 代码实现最少硬币问题,并输出每种硬币使用的数量的方法: ```python def coinChange(coins, amount): dp = [amount + 1] * (amount + 1) dp[0] = 0 res = [[0] * len(coins) for _ in range(amount + 1)] for i in range(1, amount + 1): for j in range(len(coins)): if coins[j] <= i: if dp[i - coins[j]] + 1 < dp[i]: dp[i] = dp[i - coins[j]] + 1 res[i][j] += 1 res[i] = [res[i][j] for j in range(len(coins))] if dp[amount] == amount + 1: return -1 else: return res[amount] ``` 这个函数的输入参数是硬币集合 coins 和要找零的金额 amount。它返回一个列表,其中每个元素代表对应金额所需的硬币数量。例如,如果 coins = [1, 2, 5],amount = 11,则返回值为 [1, 3, 0],表示对于金额为 1,我们需要 1 枚硬币;对于金额为 2,我们需要 3 枚硬币;对于金额为 5,我们需要 0 枚硬币

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值