考研数一|极限的计算(笔记)

极限的概念

无限接近但是不等于

函数的极限
1. 在x=x0x=x_{0}x=x0的极限

设函数f(x)f(x)f(x)x0x_{0}x0的某一去心邻域内有定义,如果存在常数AAA,对于∀ε>0\forall\varepsilon>0ε>0,总∃δ>0\exists\delta>0δ>0。当x∈(x0−δ,x0)∪(x0,x0+δ)x\in(x_{0}-\delta ,x_{0})\cup(x_{0},x_{0}+\delta)x(x0δ,x0)(x0,x0+δ)时,有∣f(x)−A∣<ε|f(x)-A|<\varepsilonf(x)A<ε,则称f(x)f(x)f(x)在点x0x_{0}x0处的极限值为AAA,记作lim⁡x→x0f(x)=A\lim_{ x \to x_{0} }f(x) = Alimxx0f(x)=A.

邻域:x0x_{0}x0的邻域就是它的父集,包含x0x_{0}x0这个点
去心邻域,就是不要x0x_{0}x0这个点

ε\varepsilonε是大于0的数,可以任意大,也可以任意小
∣f(x)−A∣|f(x)-A|f(x)A表示f(x)f(x)f(x)AAA的距离,比任意的ε\varepsilonε要小,就说明这个距离已经无限接近
xxx无限接近但不等于x0x_{0}x0时,f(0)f(0)f(0)无限接近与AAA

2. 左极限和右极限

设函数f(x)f(x)f(x)x0x_{0}x0的某一左邻域内有定义,如果存在常数AAA,对于∀ε>0\forall\varepsilon>0ε>0,总∃δ>0\exists\delta>0δ>0。当x∈(x0−δ,x0)x\in(x_{0}-\delta ,x_{0})x(x0δ,x0)时,有∣f(x)−A∣<ε|f(x)-A|<\varepsilonf(x)A<ε,则称f(x)f(x)f(x)在点x0x_{0}x0处的左极限为AAA,记作lim⁡x→x0−f(x)=A\lim_{ x \to x_{0}^{-} }f(x) = Alimxx0f(x)=Af(x0−)=Af(x_{0}^{-})=Af(x0)=A,或f(x0−0)=Af(x_{0}-0)=Af(x00)=A
类似地,可以定义右极限,记作lim⁡x→x0+f(x)=A\lim_{ x \to x_{0}^{+} }f(x) = Alimxx0+f(x)=Af(x0+)=Af(x_{0}^{+})=Af(x0+)=A,或f(x0+0)=Af(x_{0}+0)=Af(x0+0)=A
左极限和右极限统称为单侧极限

3. 在x→∞x\to\inftyx时的极限

设函数f(x)f(x)f(x)(−∞,−X)∪(X,+∞)(-\infty,-X)\cup(X,+\infty)(,X)(X,+)上有定义,如果存在常数AAA,对于∀ε>0\forall\varepsilon>0ε>0,总∃M>0\exists M>0M>0。当∣x∣>M|x|>Mx>M时,有∣f(x)−A∣<ε|f(x)-A|<\varepsilonf(x)A<ε,则称当x→∞x\to \inftyxf(x)f(x)f(x)的极限值为AAA,记作lim⁡x→∞f(x)=A\lim_{ x \to \infty }f(x) = Alimxf(x)=A.
类似地,可以定义当x→−∞x \to -\inftyxf(x)f(x)f(x)的极限lim⁡x→−∞f(x)\lim_{ x \to -\infty }f(x)limxf(x),以及当x→+∞x \to +\inftyx+f(x)f(x)f(x)的极限lim⁡x→+∞f(x)\lim_{ x \to +\infty }f(x)limx+f(x)

4.左右极限与极限的关系

lim⁡x→x0f(x)\lim_{ x \to x_{0} }f(x)limxx0f(x)存在当且仅当lim⁡x→x0−f(x)\lim_{ x \to x_{0}^{-} }f(x)limxx0f(x)lim⁡x→x0+f(x)\lim_{ x \to x_{0}^{+} }f(x)limxx0+f(x)都存在且相等
lim⁡x→∞f(x)\lim_{ x \to \infty }f(x)limxf(x)存在当且仅当lim⁡x→−∞f(x)\lim_{ x \to -\infty }f(x)limxf(x)lim⁡x→+∞f(x)\lim_{ x \to +\infty }f(x)limx+f(x)都存在且相等

数列极限

x→∞x\to\inftyx时的极限

对于数列{xn}\left \{ x_{n} \right \}{xn},如果存在常数aaa,对于∀ε>0\forall\varepsilon>0ε>0,总存在正整数N>0N>0N>0,当n>Nn>Nn>N时,有∣xn−a∣<ε|x_{n}-a|<\varepsilonxna<ε,则称数列{xn}\left \{ x_{n} \right \}{xn}收敛于aaa,记作lim⁡n→∞xn=a\lim_{ n \to \infty }x_{n}=alimnxn=a

数列的下标是正整数
nnn只能有一种情况,趋向于+∞+\infty+这种
约定n→∞n \to \inftyn代表n→+∞n \to +\inftyn+

无穷小量与无穷大量
1. 无穷小量与无穷大量的概念

无穷小量
在前面的七种极限过程中
函数f(x)f(x)f(x)的极限值为0,也即lim⁡x→□f(x)=0\lim_{ x \to \Box }f(x)=0limxf(x)=0,则称f(x)f(x)f(x)为当x→□x \to \Boxx时的无穷小量

0一定是无穷小量,但无穷小量不一定是0
无穷小量是一个动态变化的过程,与极限过程有关

无穷大量
在前面的七种极限过程中
函数f(x)f(x)f(x)的绝对值无限增大,也即lim⁡x→□f(x)=∞\lim_{ x \to \Box }f(x)=\inftylimxf(x)=,则称f(x)f(x)f(x)为当x→□x \to \Boxx时的无穷大量

无穷大量实际上是极限不存在的情况,但是极限不存在的量不一定都是无穷大量
与无穷小量类似,无穷大量也是一个动态变化的过程,而不是一个实际存在的数

2. 无穷小量与无穷大量的关系

如果x→□x \to \Boxx时,f(x)f(x)f(x)为无穷大量,则1f(x)\frac{1}{f(x)}f(x)1在同一极限过程中为无穷小量
如果x→□x \to \Boxx时,f(x)f(x)f(x)为无穷小量,且f(x)≠0f(x) \ne 0f(x)=0,则1f(x)\frac{1}{f(x)}f(x)1在同一极限过程中为无穷大量

3.无穷小量与无穷大量比较

作商

设在某极限过程x→□x \to \Boxx 中,函数α(x),β(x)\alpha(x),\beta(x)α(x),β(x)都为无穷小量,并且都不为0

  1. 如果lim⁡x→□α(x)β(x)=0\lim_{ x \to \Box }\frac{\alpha(x)}{\beta(x)}=0limxβ(x)α(x)=0,则称当x→□x \to \Boxx时,α(x)\alpha(x)α(x)β(x)\beta(x)β(x)的高阶无穷小量,或β(x)\beta(x)β(x)α(x)\alpha(x)α(x)的低阶无穷小量,α(x)=o(β(x))\alpha(x)=o(\beta(x))α(x)=o(β(x))
  2. 如果lim⁡x→□α(x)β(x)=C≠0\lim_{ x \to \Box }\frac{\alpha(x)}{\beta(x)}=C \ne 0limxβ(x)α(x)=C=0,则称当x→□x \to \Boxx时,α(x)\alpha(x)α(x)β(x)\beta(x)β(x)为同阶无穷小量
  3. lim⁡x→□α(x)β(x)=1\lim_{ x \to \Box }\frac{\alpha(x)}{\beta(x)}=1limxβ(x)α(x)=1,则称当x→□x \to \Boxx时,α(x)\alpha(x)α(x)β(x)\beta(x)β(x)为等阶无穷小量,记作α(x)∼β(x)\alpha(x)\sim\beta(x)α(x)β(x)
4. k阶无穷小量的概念

设在某极限过程x→□x \to \Boxx 中,函数α(x),β(x)\alpha(x),\beta(x)α(x),β(x)都为无穷小量,并且都不为0

如果lim⁡x→□α(x)[β(x)]k=C≠0\lim_{ x \to \Box }\frac{\alpha(x)}{[\beta(x)]^{k}}=C \ne 0limx[β(x)]kα(x)=C=0,则称当x→□x \to \Boxx时,α(x)\alpha(x)α(x)β(x)\beta(x)β(x)kkk阶无穷小量

在同一极限过程下,α(x)\alpha(x)α(x)β(x)\beta(x)β(x)kkk阶无穷小量也就是说α(x)\alpha(x)α(x)βk(x)\beta^{k}(x)βk(x)(k>0)(k>0)(k>0)是同阶无穷小量

极限的性质

函数极限的性质
  1. 唯一性:假设函数极限lim⁡x→x0f(x)\lim_{ x \to x_{0} }f(x)limxx0f(x)存在,则其极限值为一
  2. 局部有界性:假设函数极限lim⁡x→x0f(x)\lim_{ x \to x_{0} }f(x)limxx0f(x)存在,则存在δ>0\delta>0δ>0,使得函数f(x)f(x)f(x)x0x_{0}x0的去心邻域(x0−δ,x0)∪(x0,x0+δ)(x_{0}-\delta ,x_{0})\cup(x_{0},x_{0}+\delta)(x0δ,x0)(x0,x0+δ)内有界
  3. 保号性
    假设lim⁡x→x0f(x)>0\lim_{ x \to x_{0} }f(x)>0limxx0f(x)>0,则∃δ>0\exists\delta>0δ>0,使得当x∈(x0−δ,x0)∪(x0,x0+δ)x\in(x_{0}-\delta ,x_{0})\cup(x_{0},x_{0}+\delta)x(x0δ,x0)(x0,x0+δ)时,有f(x)>0f(x)>0f(x)>0

假设∃δ>0\exists\delta>0δ>0,使得当x∈(x0−δ,x0)∪(x0,x0+δ)x\in(x_{0}-\delta ,x_{0})\cup(x_{0},x_{0}+\delta)x(x0δ,x0)(x0,x0+δ)时,有f(x)≥0f(x)\ge0f(x)0,并且lim⁡x→x0f(x)\lim_{ x \to x_{0} }f(x)limxx0f(x)存在,则lim⁡x→x0f(x)≥0\lim_{ x \to x_{0} }f(x)\ge0limxx0f(x)0

数列极限的性质
  1. 唯一性:假设数列{xn}\left \{ x_{n} \right \}{xn}的极限存在,则其极限值唯一
  2. 整体有界性:假设数列{xn}\left \{ x_{n} \right \}{xn}的极限存在,则数列{xn}\left \{ x_{n} \right \}{xn}有界
  3. 保号性:
    假设lim⁡n→∞xn>0\lim_{ n \to \infty }x_{n}>0limnxn>0,则存在正整数N>0N>0N>0,使得当n>Nn>Nn>N时,有xn>0x_{n}>0xn>0
    假设lim⁡n→∞xn<0\lim_{ n \to \infty }x_{n}<0limnxn<0,则存在正整数N>0N>0N>0,使得当n>Nn>Nn>N时,有xn<0x_{n}<0xn<0
    假设lim⁡n→∞xn=0\lim_{ n \to \infty }x_{n}=0limnxn=0xnx_{n}xn的符号无法判断

假设存在正整数N>0N>0N>0,使得当n>Nn>Nn>N时,xn≥0x_{n}\ge0xn0,并且lim⁡n→∞xn\lim_{ n \to \infty }x_{n}limnxn存在,则lim⁡n→∞xn≥0\lim_{ n \to \infty }x_{n}\ge0limnxn0

函数极限的计算

计算极限的基本思路:能带入的就代入
不能带入的利用四种方法,化成能带入的再直接代入

1. 四则运算

lim⁡x→□f(x)=A,lim⁡x→□g(x)=B\lim_{ x \to \Box }f(x)=A,\lim_{ x \to \Box }g(x)=Blimxf(x)=A,limxg(x)=B,则有
lim⁡x→□(f(x)±g(x))=A±Blim⁡x→□f(x)g(x)=ABlim⁡x→□f(x)g(x)=AB(B≠0) \begin{array}{} \lim_{ x \to \Box }(f(x)\pm g(x))=A \pm B \\ \lim_{ x \to \Box }f(x)g(x)=AB \\ \lim_{ x \to \Box }\frac{f(x)}{g(x)}=\frac{A}{B}(B \ne 0) \end{array} limx(f(x)±g(x))=A±Blimxf(x)g(x)=ABlimxg(x)f(x)=BA(B=0)
和差积商的极限等于极限的和差积商

什么情况下可以使用四则运算

  1. A和B,这两个极限都存在
  2. 四则运算只适用于有限次计算的情形,对无限次运算不一定适用
  3. 数列极限的四则运算法则和函数极限的四则运算完全类似
  4. 四则运算不能直接用于00,∞∞,∞−∞,0⋅∞,1∞,∞0,00\frac{0}{0},\frac{\infty}{\infty},\infty-\infty,0\cdot \infty,1^{\infty},\infty^{0},0^{0}00,,,0,1,0,00未定式

A,BA,BA,B均为一个数时,四则运算显然适用
A,BA,BA,B∞\infty000
+∞+(+∞)=+∞+∞−(−∞)=+∞−∞−(+∞)=−(+∞+∞)=−(+∞)=−∞+∞+C=+∞+∞⋅(−∞)=−∞+∞⋅+∞=+∞−∞⋅(−∞)=+∞0⋅C1=0C1∞=C1⋅0=0C20=∞(C2≠0)C2⋅∞=∞(C2≠0)a+∞={+∞,a>10,0<a≤1 \begin{array}{} +\infty+(+\infty)=+\infty \\ +\infty-(-\infty)=+\infty \\ -\infty-(+\infty)=-(+\infty+\infty)=-(+\infty)=-\infty \\ +\infty+C=+\infty \\ +\infty \cdot(-\infty)=-\infty \\ +\infty \cdot+\infty=+\infty \\ -\infty \cdot(-\infty)=+\infty \\ 0\cdot C_{1}=0 \\ \frac{C_{1}}{\infty}=C_{1}\cdot0=0 \\ \frac{C_{2}}{0}=\infty(C_{2} \ne 0) \\ C_{2}\cdot \infty=\infty(C_{2} \ne 0) \\ a^{+\infty}=\left\{\begin{matrix} +\infty, \qquad a>1 \\ 0, \qquad 0<a\le1 \end{matrix}\right. \end{array} ++(+)=++()=+(+)=(++)=(+)=++C=++()=++=+()=+0C1=0C1=C10=00C2=(C2=0)C2=(C2=0)a+={+,a>10,0<a1

无穷比无穷 抓大头

例1
lim⁡x→∞x3+a1x2+a2x+a3x3+b1x2+b2x+b3=lim⁡x→∞1+a1x+a2x2+a3x31+b1x+b2x2+b3x3=lim⁡x→∞1+lim⁡x→∞a1x+lim⁡x→∞a2x2+lim⁡x→∞a3x3lim⁡x→∞1+lim⁡x→∞b1x+lim⁡x→∞b2x2+lim⁡x→∞b3x3=1+0+0+01+0+0+0=1 \begin{array}{} \lim_{ x \to \infty }\frac{x^{3}+a_{1}x^{2}+a_{2}x+a_{3}}{x^{3}+b_{1}x^{2}+b_{2}x+b_{3}} \\ =\lim_{ x \to \infty } \frac{1+ \frac{a_{1}}{x}+ \frac{a_{2}}{x^{2}}+ \frac{a_{3}}{x^{3}}}{1+ \frac{b_{1}}{x}+ \frac{b_{2}}{x^{2}}+ \frac{b_{3}}{x^{3}}} \\ =\frac{\lim_{ x \to \infty }1+\lim_{ x \to \infty } \frac{a_{1}}{x}+\lim_{ x \to \infty } \frac{a_{2}}{x^{2}}+\lim_{ x \to \infty } \frac{a_{3}}{x^{3}} }{\lim_{ x \to \infty }1+ \lim_{ x \to \infty } \frac{b_{1}}{x}+\lim_{ x \to \infty } \frac{b_{2}}{x^{2}}+\lim_{ x \to \infty } \frac{b_{3}}{x^{3}}} \\ =\frac{1+0+0+0}{1+0+0+0}=1 \end{array} limxx3+b1x2+b2x+b3x3+a1x2+a2x+a3=limx1+xb1+x2b2+x3b31+xa1+x2a2+x3a3=limx1+limxxb1+limxx2b2+limxx3b3limx1+limxxa1+limxx2a2+limxx3a3=1+0+0+01+0+0+0=1
例2
lim⁡x→∞x2+10000!x+108x2x2+10200=lim⁡x→∞1+10000!x+108x2+10200x2=12 \begin{array}{} \lim_{ x \to \infty } \frac{x^{2}+10000!x+10^{8}x}{2x^{2}+10^{200}} \\ =\lim_{ x \to \infty } \frac{1+\frac{10000!}{x}+\frac{10^8}{x}}{2+\frac{10^{200}}{x^2}} \\ =\frac{1}{2} \end{array} limx2x2+10200x2+10000!x+108x=limx2+x2102001+x10000!+x108=21
抓大头,当求∞∞\frac{\infty}{\infty}型极限时,分子分母中只保留最高次即可
例3
lim⁡x→∞(x4+1)3(2x2+x+3)4(x+1)20=lim⁡x→∞(x4+1x4)3(2x2+x+3x2)4(x+1x)20=lim⁡x→∞(1+1x4)3(2+1x+3x2)4(1+1x)20=16 \begin{array}{} \lim_{ x \to \infty } \frac{(x^4+1)^3(2x^2+x+3)^4}{(x+1)^{20}} \\ =\lim_{ x \to \infty } \frac{\left( \frac{x^4+1}{x^4} \right)^3\left( \frac{2x^2+x+3}{x^2} \right)^4}{\left( \frac{x+1}{x} \right)^{20}} \\ =\lim_{ x \to \infty } \frac{\left( 1+\frac{1}{x^4} \right)^3\left(2+\frac{1}{x}+ \frac{3}{x^2} \right)^4}{\left( 1+\frac{1}{x} \right)^{20}} \\ =16 \end{array} limx(x+1)20(x4+1)3(2x2+x+3)4=limx(xx+1)20(x4x4+1)3(x22x2+x+3)4=limx(1+x1)20(1+x41)3(2+x1+x23)4=16

lim⁡x→∞(x4+1)3(2x2+x+3)4(x+1)20=lim⁡x→∞(x4)3(2x2)4(x)20=16 \begin{array}{} \lim_{ x \to \infty } \frac{(x^4+1)^3(2x^2+x+3)^4}{(x+1)^{20}} \\ =\lim_{ x \to \infty } \frac{(x^4)^3(2x^2)^4}{(x)^{20}} \\ =16 \end{array} limx(x+1)20(x4+1)3(2x2+x+3)4=limx(x)20(x4)3(2x2)4=16
例4
lim⁡x→−∞xx2+100−x=lim⁡x→−∞xx2−x=lim⁡x→−∞x∣x∣−x=lim⁡x→−∞x−x−x=−12 \begin{array}{} \lim_{ x \to -\infty } \frac{x}{\sqrt{ x^2+100 }-x} \\ = \lim_{ x \to -\infty } \frac{x}{\sqrt{ x^2 }-x} \\ =\lim_{ x \to -\infty } \frac{x}{|x|-x} \\ =\lim_{ x \to -\infty } \frac{x}{-x-x} \\ =-\frac{1}{2} \end{array} limxx2+100xx=limxx2xx=limxxxx=limxxxx=21
在抓大头中,当x→−∞x \to -\inftyx中,要注意x2=−x\sqrt{ x^2 }=-xx2=x

零比零 分解因式 根式有理化

例5
lim⁡x→1x2−4x+3x2−3x+2=lim⁡x→1(x−1)(x−3)(x−1)(x−2)=lim⁡x→1x−3x−2=2 \begin{array}{} \lim_{ x \to 1 } \frac{x^2-4x+3}{x^2-3x+2} \\ =\lim_{ x \to 1 } \frac{(x-1)(x-3)}{(x-1)(x-2)} \\ =\lim_{ x \to 1 } \frac{x-3}{x-2} \\ =2 \end{array} limx1x23x+2x24x+3=limx1(x1)(x2)(x1)(x3)=limx1x2x3=2
例6
lim⁡x→0x2+3x+1−x2−3x+1x=lim⁡x→0(x2+3x+1−x2−3x+1)(x2+3x+1+x2−3x+1)x(x2+3x+1+x2−3x+1)=lim⁡x→0(x2+3x+1)−(x2−3x+1)x⋅lim⁡x→01x2+3x+1+x2−3x+1=lim⁡x→06xx⋅12=3 \begin{array}{} \lim_{ x \to 0 } \frac{\sqrt{ x^2+3x+1 }-\sqrt{ x^2-3x+1 }}{x} \\ =\lim_{ x \to 0 } \frac{(\sqrt{ x^2+3x+1 }-\sqrt{ x^2-3x+1 })(\sqrt{ x^2+3x+1 }+\sqrt{ x^2-3x+1 })}{x(\sqrt{ x^2+3x+1 }+\sqrt{ x^2-3x+1 })} \\ =\lim_{ x \to 0 } \frac{(x^2+3x+1)-(x^2-3x+1)}{x} \\ \cdot\lim_{ x \to 0 } \frac{1}{\sqrt{ x^2+3x+1 }+\sqrt{ x^2-3x+1 }} \\ =\lim_{ x \to 0 } \frac{6x}{x} \cdot \frac{1}{2} \\ =3 \end{array} limx0xx2+3x+1x23x+1=limx0x(x2+3x+1+x23x+1)(x2+3x+1x23x+1)(x2+3x+1+x23x+1)=limx0x(x2+3x+1)(x23x+1)limx0x2+3x+1+x23x+11=limx0x6x21=3
对于00\frac{0}{0}00型未定式的基本解题思路是通过约掉零因式将其化为定式,常用方法为因式分解或有理化

2. 等价无穷小替换

两个基本公式
  1. 夹逼准则
    lim⁡x→0sin⁡xx=1 \lim_{ x \to 0 } \frac{\sin x}{x}=1 x0limxsinx=1
  2. 单调有界收敛准则
    lim⁡x→0(1+x)1x=e \lim_{ x \to 0 } (1+x)^{\frac{1}{x}}=e x0lim(1+x)x1=e
六个拓展公式
  1. x→0x\to 0x0x∼arcsin⁡x∼tan⁡x∼arctan⁡x∼ln⁡(1+x)∼ex−1x \sim \arcsin x \sim \tan x \sim \arctan x\sim \ln(1+x)\sim e^x-1xarcsinxtanxarctanxln(1+x)ex1
    lim⁡x→0sin⁡xx=lim⁡t→0tarcsin⁡t=1 \lim_{ x \to 0 }\frac{\sin x}{x}=\lim_{ t \to 0 } \frac{t}{\arcsin t} = 1 x0limxsinx=t0limarcsintt=1
    lim⁡x→0sin⁡xcos⁡xxcos⁡x=lim⁡x→0tan⁡xx⋅cos⁡x=lim⁡x→0tan⁡xx⋅lim⁡x→0cos⁡x=1 \lim_{ x \to 0 } \frac{\frac{\sin x}{\cos x}}{\frac{x}{\cos x}}=\lim_{ x \to 0 } \frac{\tan x}{x}\cdot \cos x=\lim_{ x \to 0 } \frac{\tan x}{x}\cdot \lim_{ x \to 0 } \cos x=1 x0limcosxxcosxsinx=x0limxtanxcosx=x0limxtanxx0limcosx=1
    lim⁡x→0tan⁡xx=lim⁡t→0tarctan⁡t=1 \lim_{ x \to 0 } \frac{\tan x}{x}=\lim_{ t \to 0 } \frac{t}{\arctan t} = 1 x0limxtanx=t0limarctantt=1
    ln⁡lim⁡x→0(1+x)1x=ln⁡e=1lim⁡x→0ln⁡(1+x)1x=1lim⁡x→0ln⁡(1+x)x=1 \begin{array}{} \ln \lim_{ x \to 0 } (1+x)^{\frac{1}{x}}=\ln e=1 \\ \lim_{ x \to 0 } \ln(1+x)^{\frac{1}{x}}=1 \\ \lim_{ x \to 0 } \frac{\ln(1+x)}{x}=1 \end{array} lnlimx0(1+x)x1=lne=1limx0ln(1+x)x1=1limx0xln(1+x)=1
    lim⁡x→0ln⁡(1+x)x=lim⁡x→0tet−1=1 \lim_{ x \to 0 } \frac{\ln(1+x)}{x}=\lim_{ x \to 0} \frac{t}{e^t-1}=1 x0limxln(1+x)=x0limet1t=1
    ecos⁡2x−e=e(ecos⁡2x−1−1)∼e(cos⁡2x−1)ef(x)−eg(x)=e(ef(x)−g(x))∼eg(x)⋅(cos⁡2x−1) \begin{array}{} e^{\cos 2x}-e=e(e^{\cos 2x-1}-1)\sim e(\cos2x-1) \\ e^{f(x)}-e^{g(x)}=e(e^{f(x)-g(x)})\sim e^{g(x)}\cdot(\cos2x-1) \end{array} ecos2xe=e(ecos2x11)e(cos2x1)ef(x)eg(x)=e(ef(x)g(x))eg(x)(cos2x1)
  2. 1−cos⁡x∼x221-\cos x \sim \frac{x^2}{2}1cosx2x2
  3. (1+x)α−1∼αx(1+x)^\alpha-1 \sim \alpha x(1+x)α1αx
    (1+x)α−1=eln⁡(1+x)α−1=eαln⁡(1+x)−1∼αln⁡(1+x)∼αx (1+x)^\alpha-1=e^{\ln(1+x)^\alpha}-1=e^{\alpha \ln(1+x)}-1\sim \alpha \ln(1+x)\sim \alpha x (1+x)α1=eln(1+x)α1=eαln(1+x)1αln(1+x)αx

只有整个式子的乘除因子才能用等价无穷小替换,有加减时不能替换

例1
lim⁡x→0xln⁡(1+x)tan⁡2x=lim⁡x→0x⋅xx2=1 \begin{array}{} \lim_{ x \to 0 } \frac{x\ln (1+x)}{\tan^2x} \\ =\lim_{ x \to 0 } \frac{x\cdot x}{x^2}=1 \end{array} limx0tan2xxln(1+x)=limx0x2xx=1

等价无穷小替换的广义化

例2
lim⁡x→0tan⁡xarcsin⁡3x=lim⁡x→0x3x=13lim⁡x→0arcsin⁡xx=1=lim⁡x→0arcsin⁡3t3t \begin{array}{} \lim_{ x \to 0 } \frac{\tan x}{\arcsin 3x} \\ =\lim_{ x \to 0 } \frac{x}{3x}=\frac{1}{3} \\ \lim_{ x \to 0 } \frac{\arcsin x}{x}=1=\lim_{ x \to 0 } \frac{\arcsin 3t}{3t} \end{array} limx0arcsin3xtanx=limx03xx=31limx0xarcsinx=1=limx03tarcsin3t
例3
lim⁡x→∞xsin⁡2xx2+1∵lim⁡x→∞2xx2+1=lim⁡x→∞2x=0∴=lim⁡x→∞x⋅2xx2+1=lim⁡x→∞2x2x2=2 \begin{array}{} \lim_{ x \to \infty } x\sin \frac{2x}{x^2+1} \\ \because \lim_{ x \to \infty } \frac{2x}{x^{2+1}=\lim_{ x \to \infty } \frac{2}{x}}= 0 \\ \therefore =\lim_{ x \to \infty } x\cdot \frac{2x}{x^2+1} \\ =\lim_{ x \to \infty } \frac{2x^2}{x^2}=2 \end{array} limxxsinx2+12xlimxx2+1=limxx22x=0=limxxx2+12x=limxx22x2=2

等价无穷小替换的变形
  1. 凑1:加1碱1,提公因式
    x∼ln⁡(1+x)∼ex−1,(1+x)α−1∼αx,1−cos⁡x∼12x2 x\sim \ln(1+x)\sim e^x-1,(1+x)^\alpha-1\sim \alpha x,1-\cos x\sim \frac{1}{2}x^2 xln(1+x)ex1,(1+x)α1αx,1cosx21x2
  2. 凑0

3. 洛必达法则

定义

f(x),g(x)f(x),g(x)f(x),g(x)满足:

  1. lim⁡x→□f(x)=lim⁡x→□g(x)=0\lim_{ x \to \Box }f(x)=\lim_{ x \to \Box }g(x)=0limxf(x)=limxg(x)=0lim⁡x→□f(x)=lim⁡x→□g(x)=∞\lim_{ x \to \Box }f(x)=\lim_{ x \to \Box }g(x)=\inftylimxf(x)=limxg(x)=
  2. f(x),g(x)f(x),g(x)f(x),g(x)□\Box的附近均可导且g′(x)≠0g'(x)\ne 0g(x)=0
  3. lim⁡x→□f′(x)g′(x)\lim_{ x \to \Box } \frac{f'(x)}{g'(x)}limxg(x)f(x)存在或为∞\infty
    则有lim⁡x→□f(x)g(x)=lim⁡x→□f′(x)g′(x)\lim_{ x \to \Box } \frac{f(x)}{g(x)}=\lim_{ x \to \Box } \frac{f'(x)}{g'(x)}limxg(x)f(x)=limxg(x)f(x)

极限:

  1. 存在√
  2. 不存在
    1. ∞\infty
    2. 不为∞\infty

例:
lim⁡x→∞x+sin⁡xx=lim⁡x→∞xx+lim⁡x→∞sin⁡xx=1+0=1 \begin{array}{} \lim_{ x \to \infty } \frac{x+\sin x}{x} \\ =\lim_{ x \to \infty } \frac{x}{x}+\lim_{ x \to \infty } \frac{\sin x}{x} \\ = 1+0=1 \end{array} limxxx+sinx=limxxx+limxxsinx=1+0=1
无穷小量乘以有界变量仍为无穷小量

七种类型

洛必达法则
通过求导使得分母的阶数降低直至常数(0阶)
使得易于不断求导
方法:等价无穷小量替换、四则运算

1. 00\frac{0}{0}00型未定式

lim⁡x→0x−tan⁡x1−1−2x3=lim⁡x→0x−tan⁡xx3=lim⁡x→01−sec⁡2x3x2=lim⁡x→0−tan⁡2x3x2=lim⁡x→0−x23x2=−13 \begin{array}{} \lim_{ x \to 0 } \frac{x-\tan x}{1-\sqrt{ 1-2x^3 }} \\ =\lim_{ x \to 0 } \frac{x-\tan x}{x^3} \\ =\lim_{ x \to 0 } \frac{1-\sec^2x}{3x^2} \\ =\lim_{ x \to 0 } \frac{-\tan^2x}{3x^2} \\ =\lim_{ x \to 0 } \frac{-x^2}{3x^2} \\ =-\frac{1}{3} \end{array} limx0112x3xtanx=limx0x3xtanx=limx03x21sec2x=limx03x2tan2x=limx03x2x2=31
例:等替和四则
lim⁡x→0x−arcsin⁡xarctan⁡3x(cos⁡x+2)1.=lim⁡x→0x−arcsin⁡xx3(cos⁡x+2)=lim⁡x→01−11−x23x2(cos⁡x+2)+x3(−sin⁡x)=lim⁡x→0−12x23x2(cos⁡x+2)+x3(−sin⁡x)=lim⁡x→0−123(cos⁡x+2)+x(−sin⁡x)=−1182.=lim⁡x→0x−arcsin⁡xx3lim⁡x→01cos⁡x+2=13lim⁡x→0x−arcsin⁡xx3=13lim⁡x→01−11−x23x2=13lim⁡x→0−12x23x2=−1183.=lim⁡x→0x−arcsin⁡x3arctan⁡3x \begin{array}{} \lim_{ x \to 0 } \frac{x-\arcsin x}{\arctan^3x(\cos x+2)} \\ 1.\qquad=\lim_{ x \to 0 } \frac{x-\arcsin x}{x^3(\cos x+2)} \\ =\lim_{ x \to 0 } \frac{1-\frac{1}{\sqrt{ 1-x^2 }}}{3x^2(\cos x+2)+x^3(-\sin x)} \\ =\lim_{ x \to 0 } \frac{-\frac{1}{2}x^2}{3x^2(\cos x+2)+x^3(-\sin x)} \\ =\lim_{ x \to 0 } \frac{-\frac{1}{2}}{3(\cos x+2)+x(-\sin x)} \\ =-\frac{1}{18} \\ 2.\qquad=\lim_{ x \to 0 } \frac{x-\arcsin x}{x^3 }\lim_{ x \to 0 } \frac{1}{\cos x+2} \\ =\frac{1}{3}\lim_{ x \to 0 } \frac{x-\arcsin x}{x^3} \\ =\frac{1}{3}\lim_{ x \to 0 } \frac{1-\frac{1}{\sqrt{ 1-x^2} }}{3x^2} \\ =\frac{1}{3}\lim_{ x \to 0} \frac{-\frac{1}{2}x^2}{3x^2} \\ =- \frac{1}{18} \\ 3.\qquad =\lim_{ x \to 0 } \frac{x-\arcsin x}{3\arctan^3x} \end{array} limx0arctan3x(cosx+2)xarcsinx1.=limx0x3(cosx+2)xarcsinx=limx03x2(cosx+2)+x3(sinx)11x21=limx03x2(cosx+2)+x3(sinx)21x2=limx03(cosx+2)+x(sinx)21=1812.=limx0x3xarcsinxlimx0cosx+21=31limx0x3xarcsinx=31limx03x211x21=31limx03x221x2=1813.=limx03arctan3xxarcsinx

lim⁡x→□g(x)=A\lim_{ x \to \Box }g(x)=Alimxg(x)=A,则lim⁡x→□(f(x)+g(x))=lim⁡x→□f(x)+lim⁡x→□g(x)=lim⁡x→□f(x)+A\lim_{ x \to \Box }(f(x)+g(x))=\lim_{ x \to \Box }f(x)+\lim_{ x \to \Box }g(x)=\lim_{ x \to \Box }f(x)+Alimx(f(x)+g(x))=limxf(x)+limxg(x)=limxf(x)+A
lim⁡x→□g(x)=A≠0\lim_{ x \to \Box }g(x)=A\ne 0limxg(x)=A=0,则lim⁡x→□f(x)g(x)=lim⁡x→□f(x)⋅lim⁡x→□g(x)=A⋅lim⁡x→□f(x)\lim_{ x \to \Box }f(x)g(x)=\lim_{ x \to \Box }f(x)\cdot\lim_{ x \to \Box }g(x)=A\cdot\lim_{ x \to \Box }f(x)limxf(x)g(x)=limxf(x)limxg(x)=Alimxf(x)

洛必达步骤
  1. 检测类型
  2. 化简,化简的方法有
    1. 等价无穷小替换
    2. 四则运算
  3. 上下求导,整理,回到步骤1
2. ∞∞\frac{\infty}{\infty}型未定式


lim⁡x→∞x100ex=lim⁡x→∞100⋅x99ex=⋯=lim⁡x→∞100⋅99⋯⋅1ex=0 \begin{array}{} \lim_{ x \to \infty } \frac{x^{100}}{e^x} \\ =\lim_{ x \to \infty } \frac{100\cdot x^{99}}{e^x} \\ =\dots =\lim_{ x \to \infty } \frac{100\cdot 99 \dots \cdot1}{e^x} \\ =0 \end{array} limxexx100=limxex100x99==limxex100991=0
≫\gg≫\gg
ex≫xa≫(ln⁡x)be^{x}\gg x^a\gg(\ln x)^bexxa(lnx)b
x=eln⁡x≫(ln⁡x)ax=e^{\ln x}\gg(\ln x)^ax=elnx(lnx)a

  1. 抓大头的核心是抓主要部分,先抓类型(指远大于幂远大于对),再抓高次
  2. 指数函数是否大头,关键在于指数函数是否趋于无穷
  3. ∞∞\frac{\infty}{\infty}型的极限要做到能够口算
    {a>1,a+∞=+∞0<a<1,a−∞=+∞ \left\{\begin{matrix} a>1,\qquad a^{+\infty}=+\infty \\ 0<a<1,\qquad a^{-\infty}=+\infty \end{matrix}\right. {a>1,a+=+0<a<1,a=+
3. 0⋅∞0\cdot \infty0型与∞−∞\infty-\infty型未定式


lim⁡x→0+x⋅ln⁡x=lim⁡x→0+ln⁡x1x=lim⁡x→0+1x−1x2=lim⁡x→0+−x=0 \begin{array}{} \lim_{ x \to 0^+ } x\cdot \ln x \\ =\lim_{ x \to 0^+ } \frac{\ln x}{\frac{1}{x}} \\ =\lim_{ x \to 0^+ } \frac{\frac{1}{x}}{-\frac{1}{x^2}} \\ =\lim_{ x \to 0^+ } -x \\ =0 \end{array} limx0+xlnx=limx0+x1lnx=limx0+x21x1=limx0+x=0

  1. 借助无穷小量和无穷大量的关系,可以将0⋅∞0\cdot \infty0化为01∞\frac{0}{\frac{1}{\infty}}10∞10\frac{\infty}{\frac{1}{0}}01,原则是使得导数更简单
  2. ∞−∞\infty-\infty型,如果有分母,一般利用通分转化为00\frac{0}{0}00
  3. 没有分母时,一般利用倒代换,将xxx替换成1t\frac{1}{t}t1,构造分母,再进行通分
  4. 出现根式,通过根式有理化转化为∞∞\frac{\infty}{\infty}
4. 幂指函数的极限
  1. 000^000∞0\infty^00
    对数恒等变形
  2. 1∞1^{\infty}1
    对数恒等变形
    假设lim⁡x→□u(x)v(x)\lim_{ x \to \Box } u(x)^{v(x)}limxu(x)v(x)1∞1^\infty1型,也即lim⁡x→□u(x)=1\lim_{ x \to \Box }u(x)=1limxu(x)=1lim⁡x→□v(x)=∞\lim_{ x \to \Box }v(x)=\inftylimxv(x)=
    则可以使用公式
    lim⁡x→□u(x)v(x)=elim⁡x→□(u(x)−1)v(x) \lim_{ x \to \Box }u(x)^{v(x)}=e^{\lim_{ x \to \Box }(u(x)-1)v(x) } xlimu(x)v(x)=elimx(u(x)1)v(x)

如果极限式的某一部分为幂指函数,而不是整个极限式为幂指函数,无论该幂指函数时什么类型的极限,一律通过对数恒等变形进行变形

4. 泰勒公式

设函数f(x)f(x)f(x)有直至nnn阶导数,当x→x0x\to x_{0}xx0时,泰勒公式:
f(x)=f(x0)+f′(x0)(x−x0)+f′′(x0)2!(x−x0)2+⋯+fn(x0)n!(x−x0)n+o((x−x0)n) \begin{array}{} f(x)=f(x_{0})+f'(x_{0})(x-x_{0})+\frac{f''(x_{0})}{2!}(x-x_{0})^2+ \\ \dots+\frac{f^{n}(x_{0})}{n!}(x-x_{0})^n+o((x-x_{0})^n) \end{array} f(x)=f(x0)+f(x0)(xx0)+2!f′′(x0)(xx0)2++n!fn(x0)(xx0)n+o((xx0)n)
意义:把任何一个函数,简化为了幂函数与o((x−x0)n)o((x-x_{0})^n)o((xx0)n)之和
特殊地,当x0=0x_{0}=0x0=0时,麦克劳林公式:
f(x)=f(0)+f′(0)x+f′′(0)2!x2+⋯+fn(0)n!xn+o(xn) \begin{array}{} f(x)=f(0)+f'(0)x+\frac{f''(0)}{2!}x^2+ \\ \dots+\frac{f^{n}(0)}{n!}x^n+o(x^n) \end{array} f(x)=f(0)+f(0)x+2!f′′(0)x2++n!fn(0)xn+o(xn)

lim⁡x→0ex−1−xx2=lim⁡x→01+x+x22+o(x2)−1−xx2=lim⁡x→0x22+o(x2)x2=lim⁡x→0x22x2+lim⁡x→0o(x2)x2=12+0=12 \begin{array}{} \lim_{ x \to 0 } \frac{e^x-1-x}{x^2} \\ =\lim_{ x \to 0 } \frac{1+x+\frac{x^2}{2}+o(x^2)-1-x}{x^2} \\ =\lim_{ x \to 0 } \frac{\frac{x^2}{2}+o(x^2)}{x^2} \\ =\lim_{ x \to 0 } \frac{\frac{x^2}{2}}{x^2}+\lim_{ x \to 0 } \frac{o(x^2)}{x^2} \\ =\frac{1}{2}+0 \\ =\frac{1}{2} \end{array} limx0x2ex1x=limx0x21+x+2x2+o(x2)1x=limx0x22x2+o(x2)=limx0x22x2+limx0x2o(x2)=21+0=21

常见的麦克劳林公式

ex=1+x+x22!+o(x2) e^x=1+x+\frac{x^2}{2!}+o(x^2) ex=1+x+2!x2+o(x2)
ln⁡(1+x)=x−x22+o(x2) \ln(1+x)=x-\frac{x^2}{2}+o(x^2) ln(1+x)=x2x2+o(x2)
(1+x)a=1+ax+a(a−1)2!x2+o(x2) (1+x)^a=1+ax+\frac{a(a-1)}{2!}x^2+o(x^2) (1+x)a=1+ax+2!a(a1)x2+o(x2)
cos⁡x=1+x22!+x44!+o(x4) \cos x=1+\frac{x^2}{2!}+\frac{x^4}{4!}+o(x^4) cosx=1+2!x2+4!x4+o(x4)
sin⁡x=x−x33!+o(x3) \sin x=x-\frac{x^3}{3!}+o(x^3) sinx=x3!x3+o(x3)
arcsin⁡x=x+x36+o(x3) \arcsin x=x+\frac{x^3}{6}+o(x^3) arcsinx=x+6x3+o(x3)
tan⁡x=x+x33+o(x3) \tan x=x+\frac{x^3}{3}+o(x^3) tanx=x+3x3+o(x3)
arctan⁡x=x−x33+o(x3) \arctan x=x-\frac{x^3}{3}+o(x^3) arctanx=x3x3+o(x3)

泰勒公式步骤,展开,合并,替换
等价无穷小替换,低阶吸高阶
exe^xex展开的时候,只需要展开到对应的阶数就可以了,上下同阶
如果式子里没有带次方的,就试,多退少补,直到有一个次方的系数不为零

泰勒公式广义化

xxx变为□\Box,当□→0\Box\to 00
式子仍然成立
lim⁡x→0x2−sin⁡2xx4=13 \lim_{ x \to 0 } \frac{x^2-\sin^2x}{x^4}=\frac{1}{3} x0limx4x2sin2x=31
lim⁡x→0x−sin⁡xx3=16 \lim_{ x \to 0 } \frac{x-\sin x}{x^3}=\frac{1}{6} x0limx3xsinx=61

极限式中参数的讨论

根据极限的值,让求极限式中的参数

对已知极限值要计算极限式中的参数的问题,运用洛必达法则进行讨论是比较困难的,而运用泰勒公式比较方便、快捷
对抽象函数进行泰勒公式展开的关键是展开到第几项,一般来说,基本原则有两个

  1. 根据函数本身是几阶可导的,函数nnn阶可导,则皮亚诺余项的泰勒公式就可以展开到第几项
  2. 保持上下同阶,分子和分母如果有一边能确定阶数,则另一边直接展开到相应的阶数即可

单侧极限

绝大多数极限式不需要考虑单侧极限
两种情况需要考虑

  1. 分段函数且分段点左右两侧表达式不同时,需要考虑单侧极限
  2. 极限中含有e∞,arctan⁡∞e^\infty,\arctan ^\inftye,arctan时,需要考虑单侧极限

数列极限的计算

方法
  1. 直接计算:将数列极限转换为函数极限来计算
  2. 数列xn{x_{n}}xn收敛于aaa等价于它的任一子数列也收敛且极限为aaa
  3. 夹逼准则
  4. 单调有界收敛准则
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值