极限的概念
无限接近但是不等于
函数的极限
1. 在x=x0x=x_{0}x=x0的极限
设函数f(x)f(x)f(x)在x0x_{0}x0的某一去心邻域内有定义,如果存在常数AAA,对于∀ε>0\forall\varepsilon>0∀ε>0,总∃δ>0\exists\delta>0∃δ>0。当x∈(x0−δ,x0)∪(x0,x0+δ)x\in(x_{0}-\delta ,x_{0})\cup(x_{0},x_{0}+\delta)x∈(x0−δ,x0)∪(x0,x0+δ)时,有∣f(x)−A∣<ε|f(x)-A|<\varepsilon∣f(x)−A∣<ε,则称f(x)f(x)f(x)在点x0x_{0}x0处的极限值为AAA,记作limx→x0f(x)=A\lim_{ x \to x_{0} }f(x) = Alimx→x0f(x)=A.
邻域:x0x_{0}x0的邻域就是它的父集,包含x0x_{0}x0这个点
去心邻域,就是不要x0x_{0}x0这个点
ε\varepsilonε是大于0的数,可以任意大,也可以任意小
∣f(x)−A∣|f(x)-A|∣f(x)−A∣表示f(x)f(x)f(x)和AAA的距离,比任意的ε\varepsilonε要小,就说明这个距离已经无限接近
当xxx无限接近但不等于x0x_{0}x0时,f(0)f(0)f(0)无限接近与AAA
2. 左极限和右极限
设函数f(x)f(x)f(x)在x0x_{0}x0的某一左邻域内有定义,如果存在常数AAA,对于∀ε>0\forall\varepsilon>0∀ε>0,总∃δ>0\exists\delta>0∃δ>0。当x∈(x0−δ,x0)x\in(x_{0}-\delta ,x_{0})x∈(x0−δ,x0)时,有∣f(x)−A∣<ε|f(x)-A|<\varepsilon∣f(x)−A∣<ε,则称f(x)f(x)f(x)在点x0x_{0}x0处的左极限为AAA,记作limx→x0−f(x)=A\lim_{ x \to x_{0}^{-} }f(x) = Alimx→x0−f(x)=A或f(x0−)=Af(x_{0}^{-})=Af(x0−)=A,或f(x0−0)=Af(x_{0}-0)=Af(x0−0)=A
类似地,可以定义右极限,记作limx→x0+f(x)=A\lim_{ x \to x_{0}^{+} }f(x) = Alimx→x0+f(x)=A或f(x0+)=Af(x_{0}^{+})=Af(x0+)=A,或f(x0+0)=Af(x_{0}+0)=Af(x0+0)=A
左极限和右极限统称为单侧极限
3. 在x→∞x\to\inftyx→∞时的极限
设函数f(x)f(x)f(x)在(−∞,−X)∪(X,+∞)(-\infty,-X)\cup(X,+\infty)(−∞,−X)∪(X,+∞)上有定义,如果存在常数AAA,对于∀ε>0\forall\varepsilon>0∀ε>0,总∃M>0\exists M>0∃M>0。当∣x∣>M|x|>M∣x∣>M时,有∣f(x)−A∣<ε|f(x)-A|<\varepsilon∣f(x)−A∣<ε,则称当x→∞x\to \inftyx→∞时f(x)f(x)f(x)的极限值为AAA,记作limx→∞f(x)=A\lim_{ x \to \infty }f(x) = Alimx→∞f(x)=A.
类似地,可以定义当x→−∞x \to -\inftyx→−∞时f(x)f(x)f(x)的极限limx→−∞f(x)\lim_{ x \to -\infty }f(x)limx→−∞f(x),以及当x→+∞x \to +\inftyx→+∞时f(x)f(x)f(x)的极限limx→+∞f(x)\lim_{ x \to +\infty }f(x)limx→+∞f(x)
4.左右极限与极限的关系
limx→x0f(x)\lim_{ x \to x_{0} }f(x)limx→x0f(x)存在当且仅当limx→x0−f(x)\lim_{ x \to x_{0}^{-} }f(x)limx→x0−f(x)与limx→x0+f(x)\lim_{ x \to x_{0}^{+} }f(x)limx→x0+f(x)都存在且相等
limx→∞f(x)\lim_{ x \to \infty }f(x)limx→∞f(x)存在当且仅当limx→−∞f(x)\lim_{ x \to -\infty }f(x)limx→−∞f(x)与limx→+∞f(x)\lim_{ x \to +\infty }f(x)limx→+∞f(x)都存在且相等
数列极限
在x→∞x\to\inftyx→∞时的极限
对于数列{xn}\left \{ x_{n} \right \}{xn},如果存在常数aaa,对于∀ε>0\forall\varepsilon>0∀ε>0,总存在正整数N>0N>0N>0,当n>Nn>Nn>N时,有∣xn−a∣<ε|x_{n}-a|<\varepsilon∣xn−a∣<ε,则称数列{xn}\left \{ x_{n} \right \}{xn}收敛于aaa,记作limn→∞xn=a\lim_{ n \to \infty }x_{n}=alimn→∞xn=a
数列的下标是正整数
nnn只能有一种情况,趋向于+∞+\infty+∞这种
约定n→∞n \to \inftyn→∞代表n→+∞n \to +\inftyn→+∞
无穷小量与无穷大量
1. 无穷小量与无穷大量的概念
无穷小量
在前面的七种极限过程中
函数f(x)f(x)f(x)的极限值为0,也即limx→□f(x)=0\lim_{ x \to \Box }f(x)=0limx→□f(x)=0,则称f(x)f(x)f(x)为当x→□x \to \Boxx→□时的无穷小量
0一定是无穷小量,但无穷小量不一定是0
无穷小量是一个动态变化的过程,与极限过程有关
无穷大量
在前面的七种极限过程中
函数f(x)f(x)f(x)的绝对值无限增大,也即limx→□f(x)=∞\lim_{ x \to \Box }f(x)=\inftylimx→□f(x)=∞,则称f(x)f(x)f(x)为当x→□x \to \Boxx→□时的无穷大量
无穷大量实际上是极限不存在的情况,但是极限不存在的量不一定都是无穷大量
与无穷小量类似,无穷大量也是一个动态变化的过程,而不是一个实际存在的数
2. 无穷小量与无穷大量的关系
如果x→□x \to \Boxx→□时,f(x)f(x)f(x)为无穷大量,则1f(x)\frac{1}{f(x)}f(x)1在同一极限过程中为无穷小量
如果x→□x \to \Boxx→□时,f(x)f(x)f(x)为无穷小量,且f(x)≠0f(x) \ne 0f(x)=0,则1f(x)\frac{1}{f(x)}f(x)1在同一极限过程中为无穷大量
3.无穷小量与无穷大量比较
作商
设在某极限过程x→□x \to \Boxx→□ 中,函数α(x),β(x)\alpha(x),\beta(x)α(x),β(x)都为无穷小量,并且都不为0
- 如果limx→□α(x)β(x)=0\lim_{ x \to \Box }\frac{\alpha(x)}{\beta(x)}=0limx→□β(x)α(x)=0,则称当x→□x \to \Boxx→□时,α(x)\alpha(x)α(x)为β(x)\beta(x)β(x)的高阶无穷小量,或β(x)\beta(x)β(x)为α(x)\alpha(x)α(x)的低阶无穷小量,α(x)=o(β(x))\alpha(x)=o(\beta(x))α(x)=o(β(x))
- 如果limx→□α(x)β(x)=C≠0\lim_{ x \to \Box }\frac{\alpha(x)}{\beta(x)}=C \ne 0limx→□β(x)α(x)=C=0,则称当x→□x \to \Boxx→□时,α(x)\alpha(x)α(x)与β(x)\beta(x)β(x)为同阶无穷小量
- 若limx→□α(x)β(x)=1\lim_{ x \to \Box }\frac{\alpha(x)}{\beta(x)}=1limx→□β(x)α(x)=1,则称当x→□x \to \Boxx→□时,α(x)\alpha(x)α(x)与β(x)\beta(x)β(x)为等阶无穷小量,记作α(x)∼β(x)\alpha(x)\sim\beta(x)α(x)∼β(x)
4. k阶无穷小量的概念
设在某极限过程x→□x \to \Boxx→□ 中,函数α(x),β(x)\alpha(x),\beta(x)α(x),β(x)都为无穷小量,并且都不为0
如果limx→□α(x)[β(x)]k=C≠0\lim_{ x \to \Box }\frac{\alpha(x)}{[\beta(x)]^{k}}=C \ne 0limx→□[β(x)]kα(x)=C=0,则称当x→□x \to \Boxx→□时,α(x)\alpha(x)α(x)是β(x)\beta(x)β(x)的kkk阶无穷小量
在同一极限过程下,α(x)\alpha(x)α(x)是β(x)\beta(x)β(x)的kkk阶无穷小量也就是说α(x)\alpha(x)α(x)与βk(x)\beta^{k}(x)βk(x),(k>0)(k>0)(k>0)是同阶无穷小量
极限的性质
函数极限的性质
- 唯一性:假设函数极限limx→x0f(x)\lim_{ x \to x_{0} }f(x)limx→x0f(x)存在,则其极限值为一
- 局部有界性:假设函数极限limx→x0f(x)\lim_{ x \to x_{0} }f(x)limx→x0f(x)存在,则存在δ>0\delta>0δ>0,使得函数f(x)f(x)f(x)在x0x_{0}x0的去心邻域(x0−δ,x0)∪(x0,x0+δ)(x_{0}-\delta ,x_{0})\cup(x_{0},x_{0}+\delta)(x0−δ,x0)∪(x0,x0+δ)内有界
- 保号性
假设limx→x0f(x)>0\lim_{ x \to x_{0} }f(x)>0limx→x0f(x)>0,则∃δ>0\exists\delta>0∃δ>0,使得当x∈(x0−δ,x0)∪(x0,x0+δ)x\in(x_{0}-\delta ,x_{0})\cup(x_{0},x_{0}+\delta)x∈(x0−δ,x0)∪(x0,x0+δ)时,有f(x)>0f(x)>0f(x)>0
假设∃δ>0\exists\delta>0∃δ>0,使得当x∈(x0−δ,x0)∪(x0,x0+δ)x\in(x_{0}-\delta ,x_{0})\cup(x_{0},x_{0}+\delta)x∈(x0−δ,x0)∪(x0,x0+δ)时,有f(x)≥0f(x)\ge0f(x)≥0,并且limx→x0f(x)\lim_{ x \to x_{0} }f(x)limx→x0f(x)存在,则limx→x0f(x)≥0\lim_{ x \to x_{0} }f(x)\ge0limx→x0f(x)≥0
数列极限的性质
- 唯一性:假设数列{xn}\left \{ x_{n} \right \}{xn}的极限存在,则其极限值唯一
- 整体有界性:假设数列{xn}\left \{ x_{n} \right \}{xn}的极限存在,则数列{xn}\left \{ x_{n} \right \}{xn}有界
- 保号性:
假设limn→∞xn>0\lim_{ n \to \infty }x_{n}>0limn→∞xn>0,则存在正整数N>0N>0N>0,使得当n>Nn>Nn>N时,有xn>0x_{n}>0xn>0
假设limn→∞xn<0\lim_{ n \to \infty }x_{n}<0limn→∞xn<0,则存在正整数N>0N>0N>0,使得当n>Nn>Nn>N时,有xn<0x_{n}<0xn<0
假设limn→∞xn=0\lim_{ n \to \infty }x_{n}=0limn→∞xn=0,xnx_{n}xn的符号无法判断
假设存在正整数N>0N>0N>0,使得当n>Nn>Nn>N时,xn≥0x_{n}\ge0xn≥0,并且limn→∞xn\lim_{ n \to \infty }x_{n}limn→∞xn存在,则limn→∞xn≥0\lim_{ n \to \infty }x_{n}\ge0limn→∞xn≥0
函数极限的计算
计算极限的基本思路:能带入的就代入
不能带入的利用四种方法,化成能带入的再直接代入
1. 四则运算
设limx→□f(x)=A,limx→□g(x)=B\lim_{ x \to \Box }f(x)=A,\lim_{ x \to \Box }g(x)=Blimx→□f(x)=A,limx→□g(x)=B,则有
limx→□(f(x)±g(x))=A±Blimx→□f(x)g(x)=ABlimx→□f(x)g(x)=AB(B≠0)
\begin{array}{}
\lim_{ x \to \Box }(f(x)\pm g(x))=A \pm B \\
\lim_{ x \to \Box }f(x)g(x)=AB \\
\lim_{ x \to \Box }\frac{f(x)}{g(x)}=\frac{A}{B}(B \ne 0)
\end{array}
limx→□(f(x)±g(x))=A±Blimx→□f(x)g(x)=ABlimx→□g(x)f(x)=BA(B=0)
和差积商的极限等于极限的和差积商
什么情况下可以使用四则运算
- A和B,这两个极限都存在
- 四则运算只适用于有限次计算的情形,对无限次运算不一定适用
- 数列极限的四则运算法则和函数极限的四则运算完全类似
- 四则运算不能直接用于00,∞∞,∞−∞,0⋅∞,1∞,∞0,00\frac{0}{0},\frac{\infty}{\infty},\infty-\infty,0\cdot \infty,1^{\infty},\infty^{0},0^{0}00,∞∞,∞−∞,0⋅∞,1∞,∞0,00未定式
当A,BA,BA,B均为一个数时,四则运算显然适用
当A,BA,BA,B为∞\infty∞或000时
+∞+(+∞)=+∞+∞−(−∞)=+∞−∞−(+∞)=−(+∞+∞)=−(+∞)=−∞+∞+C=+∞+∞⋅(−∞)=−∞+∞⋅+∞=+∞−∞⋅(−∞)=+∞0⋅C1=0C1∞=C1⋅0=0C20=∞(C2≠0)C2⋅∞=∞(C2≠0)a+∞={+∞,a>10,0<a≤1
\begin{array}{}
+\infty+(+\infty)=+\infty \\
+\infty-(-\infty)=+\infty \\
-\infty-(+\infty)=-(+\infty+\infty)=-(+\infty)=-\infty \\
+\infty+C=+\infty \\
+\infty \cdot(-\infty)=-\infty \\
+\infty \cdot+\infty=+\infty \\
-\infty \cdot(-\infty)=+\infty \\
0\cdot C_{1}=0 \\
\frac{C_{1}}{\infty}=C_{1}\cdot0=0 \\
\frac{C_{2}}{0}=\infty(C_{2} \ne 0) \\
C_{2}\cdot \infty=\infty(C_{2} \ne 0) \\
a^{+\infty}=\left\{\begin{matrix}
+\infty, \qquad a>1 \\
0, \qquad 0<a\le1
\end{matrix}\right.
\end{array}
+∞+(+∞)=+∞+∞−(−∞)=+∞−∞−(+∞)=−(+∞+∞)=−(+∞)=−∞+∞+C=+∞+∞⋅(−∞)=−∞+∞⋅+∞=+∞−∞⋅(−∞)=+∞0⋅C1=0∞C1=C1⋅0=00C2=∞(C2=0)C2⋅∞=∞(C2=0)a+∞={+∞,a>10,0<a≤1
无穷比无穷 抓大头
例1
limx→∞x3+a1x2+a2x+a3x3+b1x2+b2x+b3=limx→∞1+a1x+a2x2+a3x31+b1x+b2x2+b3x3=limx→∞1+limx→∞a1x+limx→∞a2x2+limx→∞a3x3limx→∞1+limx→∞b1x+limx→∞b2x2+limx→∞b3x3=1+0+0+01+0+0+0=1
\begin{array}{}
\lim_{ x \to \infty }\frac{x^{3}+a_{1}x^{2}+a_{2}x+a_{3}}{x^{3}+b_{1}x^{2}+b_{2}x+b_{3}} \\
=\lim_{ x \to \infty } \frac{1+ \frac{a_{1}}{x}+ \frac{a_{2}}{x^{2}}+ \frac{a_{3}}{x^{3}}}{1+ \frac{b_{1}}{x}+ \frac{b_{2}}{x^{2}}+ \frac{b_{3}}{x^{3}}} \\
=\frac{\lim_{ x \to \infty }1+\lim_{ x \to \infty } \frac{a_{1}}{x}+\lim_{ x \to \infty } \frac{a_{2}}{x^{2}}+\lim_{ x \to \infty } \frac{a_{3}}{x^{3}} }{\lim_{ x \to \infty }1+ \lim_{ x \to \infty } \frac{b_{1}}{x}+\lim_{ x \to \infty } \frac{b_{2}}{x^{2}}+\lim_{ x \to \infty } \frac{b_{3}}{x^{3}}} \\
=\frac{1+0+0+0}{1+0+0+0}=1
\end{array}
limx→∞x3+b1x2+b2x+b3x3+a1x2+a2x+a3=limx→∞1+xb1+x2b2+x3b31+xa1+x2a2+x3a3=limx→∞1+limx→∞xb1+limx→∞x2b2+limx→∞x3b3limx→∞1+limx→∞xa1+limx→∞x2a2+limx→∞x3a3=1+0+0+01+0+0+0=1
例2
limx→∞x2+10000!x+108x2x2+10200=limx→∞1+10000!x+108x2+10200x2=12
\begin{array}{}
\lim_{ x \to \infty } \frac{x^{2}+10000!x+10^{8}x}{2x^{2}+10^{200}} \\
=\lim_{ x \to \infty } \frac{1+\frac{10000!}{x}+\frac{10^8}{x}}{2+\frac{10^{200}}{x^2}} \\
=\frac{1}{2}
\end{array}
limx→∞2x2+10200x2+10000!x+108x=limx→∞2+x2102001+x10000!+x108=21
抓大头,当求∞∞\frac{\infty}{\infty}∞∞型极限时,分子分母中只保留最高次即可
例3
limx→∞(x4+1)3(2x2+x+3)4(x+1)20=limx→∞(x4+1x4)3(2x2+x+3x2)4(x+1x)20=limx→∞(1+1x4)3(2+1x+3x2)4(1+1x)20=16
\begin{array}{}
\lim_{ x \to \infty } \frac{(x^4+1)^3(2x^2+x+3)^4}{(x+1)^{20}} \\
=\lim_{ x \to \infty } \frac{\left( \frac{x^4+1}{x^4} \right)^3\left( \frac{2x^2+x+3}{x^2} \right)^4}{\left( \frac{x+1}{x} \right)^{20}} \\
=\lim_{ x \to \infty } \frac{\left( 1+\frac{1}{x^4} \right)^3\left(2+\frac{1}{x}+ \frac{3}{x^2} \right)^4}{\left( 1+\frac{1}{x} \right)^{20}} \\
=16
\end{array}
limx→∞(x+1)20(x4+1)3(2x2+x+3)4=limx→∞(xx+1)20(x4x4+1)3(x22x2+x+3)4=limx→∞(1+x1)20(1+x41)3(2+x1+x23)4=16
或
limx→∞(x4+1)3(2x2+x+3)4(x+1)20=limx→∞(x4)3(2x2)4(x)20=16
\begin{array}{}
\lim_{ x \to \infty } \frac{(x^4+1)^3(2x^2+x+3)^4}{(x+1)^{20}} \\
=\lim_{ x \to \infty } \frac{(x^4)^3(2x^2)^4}{(x)^{20}} \\
=16
\end{array}
limx→∞(x+1)20(x4+1)3(2x2+x+3)4=limx→∞(x)20(x4)3(2x2)4=16
例4
limx→−∞xx2+100−x=limx→−∞xx2−x=limx→−∞x∣x∣−x=limx→−∞x−x−x=−12
\begin{array}{}
\lim_{ x \to -\infty } \frac{x}{\sqrt{ x^2+100 }-x} \\
= \lim_{ x \to -\infty } \frac{x}{\sqrt{ x^2 }-x} \\
=\lim_{ x \to -\infty } \frac{x}{|x|-x} \\
=\lim_{ x \to -\infty } \frac{x}{-x-x} \\
=-\frac{1}{2}
\end{array}
limx→−∞x2+100−xx=limx→−∞x2−xx=limx→−∞∣x∣−xx=limx→−∞−x−xx=−21
在抓大头中,当x→−∞x \to -\inftyx→−∞中,要注意x2=−x\sqrt{ x^2 }=-xx2=−x
零比零 分解因式 根式有理化
例5
limx→1x2−4x+3x2−3x+2=limx→1(x−1)(x−3)(x−1)(x−2)=limx→1x−3x−2=2
\begin{array}{}
\lim_{ x \to 1 } \frac{x^2-4x+3}{x^2-3x+2} \\
=\lim_{ x \to 1 } \frac{(x-1)(x-3)}{(x-1)(x-2)} \\
=\lim_{ x \to 1 } \frac{x-3}{x-2} \\
=2
\end{array}
limx→1x2−3x+2x2−4x+3=limx→1(x−1)(x−2)(x−1)(x−3)=limx→1x−2x−3=2
例6
limx→0x2+3x+1−x2−3x+1x=limx→0(x2+3x+1−x2−3x+1)(x2+3x+1+x2−3x+1)x(x2+3x+1+x2−3x+1)=limx→0(x2+3x+1)−(x2−3x+1)x⋅limx→01x2+3x+1+x2−3x+1=limx→06xx⋅12=3
\begin{array}{}
\lim_{ x \to 0 } \frac{\sqrt{ x^2+3x+1 }-\sqrt{ x^2-3x+1 }}{x} \\
=\lim_{ x \to 0 } \frac{(\sqrt{ x^2+3x+1 }-\sqrt{ x^2-3x+1 })(\sqrt{ x^2+3x+1 }+\sqrt{ x^2-3x+1 })}{x(\sqrt{ x^2+3x+1 }+\sqrt{ x^2-3x+1 })} \\
=\lim_{ x \to 0 } \frac{(x^2+3x+1)-(x^2-3x+1)}{x} \\
\cdot\lim_{ x \to 0 } \frac{1}{\sqrt{ x^2+3x+1 }+\sqrt{ x^2-3x+1 }} \\
=\lim_{ x \to 0 } \frac{6x}{x} \cdot \frac{1}{2} \\
=3
\end{array}
limx→0xx2+3x+1−x2−3x+1=limx→0x(x2+3x+1+x2−3x+1)(x2+3x+1−x2−3x+1)(x2+3x+1+x2−3x+1)=limx→0x(x2+3x+1)−(x2−3x+1)⋅limx→0x2+3x+1+x2−3x+11=limx→0x6x⋅21=3
对于00\frac{0}{0}00型未定式的基本解题思路是通过约掉零因式将其化为定式,常用方法为因式分解或有理化
2. 等价无穷小替换
两个基本公式
- 夹逼准则
limx→0sinxx=1 \lim_{ x \to 0 } \frac{\sin x}{x}=1 x→0limxsinx=1 - 单调有界收敛准则
limx→0(1+x)1x=e \lim_{ x \to 0 } (1+x)^{\frac{1}{x}}=e x→0lim(1+x)x1=e
六个拓展公式
- x→0x\to 0x→0,x∼arcsinx∼tanx∼arctanx∼ln(1+x)∼ex−1x \sim \arcsin x \sim \tan x \sim \arctan x\sim \ln(1+x)\sim e^x-1x∼arcsinx∼tanx∼arctanx∼ln(1+x)∼ex−1
limx→0sinxx=limt→0tarcsint=1 \lim_{ x \to 0 }\frac{\sin x}{x}=\lim_{ t \to 0 } \frac{t}{\arcsin t} = 1 x→0limxsinx=t→0limarcsintt=1
limx→0sinxcosxxcosx=limx→0tanxx⋅cosx=limx→0tanxx⋅limx→0cosx=1 \lim_{ x \to 0 } \frac{\frac{\sin x}{\cos x}}{\frac{x}{\cos x}}=\lim_{ x \to 0 } \frac{\tan x}{x}\cdot \cos x=\lim_{ x \to 0 } \frac{\tan x}{x}\cdot \lim_{ x \to 0 } \cos x=1 x→0limcosxxcosxsinx=x→0limxtanx⋅cosx=x→0limxtanx⋅x→0limcosx=1
limx→0tanxx=limt→0tarctant=1 \lim_{ x \to 0 } \frac{\tan x}{x}=\lim_{ t \to 0 } \frac{t}{\arctan t} = 1 x→0limxtanx=t→0limarctantt=1
lnlimx→0(1+x)1x=lne=1limx→0ln(1+x)1x=1limx→0ln(1+x)x=1 \begin{array}{} \ln \lim_{ x \to 0 } (1+x)^{\frac{1}{x}}=\ln e=1 \\ \lim_{ x \to 0 } \ln(1+x)^{\frac{1}{x}}=1 \\ \lim_{ x \to 0 } \frac{\ln(1+x)}{x}=1 \end{array} lnlimx→0(1+x)x1=lne=1limx→0ln(1+x)x1=1limx→0xln(1+x)=1
limx→0ln(1+x)x=limx→0tet−1=1 \lim_{ x \to 0 } \frac{\ln(1+x)}{x}=\lim_{ x \to 0} \frac{t}{e^t-1}=1 x→0limxln(1+x)=x→0limet−1t=1
ecos2x−e=e(ecos2x−1−1)∼e(cos2x−1)ef(x)−eg(x)=e(ef(x)−g(x))∼eg(x)⋅(cos2x−1) \begin{array}{} e^{\cos 2x}-e=e(e^{\cos 2x-1}-1)\sim e(\cos2x-1) \\ e^{f(x)}-e^{g(x)}=e(e^{f(x)-g(x)})\sim e^{g(x)}\cdot(\cos2x-1) \end{array} ecos2x−e=e(ecos2x−1−1)∼e(cos2x−1)ef(x)−eg(x)=e(ef(x)−g(x))∼eg(x)⋅(cos2x−1) - 1−cosx∼x221-\cos x \sim \frac{x^2}{2}1−cosx∼2x2
- (1+x)α−1∼αx(1+x)^\alpha-1 \sim \alpha x(1+x)α−1∼αx
(1+x)α−1=eln(1+x)α−1=eαln(1+x)−1∼αln(1+x)∼αx (1+x)^\alpha-1=e^{\ln(1+x)^\alpha}-1=e^{\alpha \ln(1+x)}-1\sim \alpha \ln(1+x)\sim \alpha x (1+x)α−1=eln(1+x)α−1=eαln(1+x)−1∼αln(1+x)∼αx
只有整个式子的乘除因子才能用等价无穷小替换,有加减时不能替换
例1
limx→0xln(1+x)tan2x=limx→0x⋅xx2=1
\begin{array}{}
\lim_{ x \to 0 } \frac{x\ln (1+x)}{\tan^2x} \\
=\lim_{ x \to 0 } \frac{x\cdot x}{x^2}=1
\end{array}
limx→0tan2xxln(1+x)=limx→0x2x⋅x=1
等价无穷小替换的广义化
例2
limx→0tanxarcsin3x=limx→0x3x=13limx→0arcsinxx=1=limx→0arcsin3t3t
\begin{array}{}
\lim_{ x \to 0 } \frac{\tan x}{\arcsin 3x} \\
=\lim_{ x \to 0 } \frac{x}{3x}=\frac{1}{3} \\
\lim_{ x \to 0 } \frac{\arcsin x}{x}=1=\lim_{ x \to 0 } \frac{\arcsin 3t}{3t}
\end{array}
limx→0arcsin3xtanx=limx→03xx=31limx→0xarcsinx=1=limx→03tarcsin3t
例3
limx→∞xsin2xx2+1∵limx→∞2xx2+1=limx→∞2x=0∴=limx→∞x⋅2xx2+1=limx→∞2x2x2=2
\begin{array}{}
\lim_{ x \to \infty } x\sin \frac{2x}{x^2+1} \\
\because \lim_{ x \to \infty } \frac{2x}{x^{2+1}=\lim_{ x \to \infty } \frac{2}{x}}= 0 \\
\therefore =\lim_{ x \to \infty } x\cdot \frac{2x}{x^2+1} \\
=\lim_{ x \to \infty } \frac{2x^2}{x^2}=2
\end{array}
limx→∞xsinx2+12x∵limx→∞x2+1=limx→∞x22x=0∴=limx→∞x⋅x2+12x=limx→∞x22x2=2
等价无穷小替换的变形
- 凑1:加1碱1,提公因式
x∼ln(1+x)∼ex−1,(1+x)α−1∼αx,1−cosx∼12x2 x\sim \ln(1+x)\sim e^x-1,(1+x)^\alpha-1\sim \alpha x,1-\cos x\sim \frac{1}{2}x^2 x∼ln(1+x)∼ex−1,(1+x)α−1∼αx,1−cosx∼21x2 - 凑0
3. 洛必达法则
定义
设f(x),g(x)f(x),g(x)f(x),g(x)满足:
- limx→□f(x)=limx→□g(x)=0\lim_{ x \to \Box }f(x)=\lim_{ x \to \Box }g(x)=0limx→□f(x)=limx→□g(x)=0或limx→□f(x)=limx→□g(x)=∞\lim_{ x \to \Box }f(x)=\lim_{ x \to \Box }g(x)=\inftylimx→□f(x)=limx→□g(x)=∞
- f(x),g(x)f(x),g(x)f(x),g(x)在□\Box□的附近均可导且g′(x)≠0g'(x)\ne 0g′(x)=0
- limx→□f′(x)g′(x)\lim_{ x \to \Box } \frac{f'(x)}{g'(x)}limx→□g′(x)f′(x)存在或为∞\infty∞
则有limx→□f(x)g(x)=limx→□f′(x)g′(x)\lim_{ x \to \Box } \frac{f(x)}{g(x)}=\lim_{ x \to \Box } \frac{f'(x)}{g'(x)}limx→□g(x)f(x)=limx→□g′(x)f′(x)
极限:
- 存在√
- 不存在
- ∞\infty∞√
- 不为∞\infty∞
例:
limx→∞x+sinxx=limx→∞xx+limx→∞sinxx=1+0=1
\begin{array}{}
\lim_{ x \to \infty } \frac{x+\sin x}{x} \\
=\lim_{ x \to \infty } \frac{x}{x}+\lim_{ x \to \infty } \frac{\sin x}{x} \\
= 1+0=1
\end{array}
limx→∞xx+sinx=limx→∞xx+limx→∞xsinx=1+0=1
无穷小量乘以有界变量仍为无穷小量
七种类型
洛必达法则
通过求导使得分母的阶数降低直至常数(0阶)
使得易于不断求导
方法:等价无穷小量替换、四则运算
1. 00\frac{0}{0}00型未定式
limx→0x−tanx1−1−2x3=limx→0x−tanxx3=limx→01−sec2x3x2=limx→0−tan2x3x2=limx→0−x23x2=−13
\begin{array}{}
\lim_{ x \to 0 } \frac{x-\tan x}{1-\sqrt{ 1-2x^3 }} \\
=\lim_{ x \to 0 } \frac{x-\tan x}{x^3} \\
=\lim_{ x \to 0 } \frac{1-\sec^2x}{3x^2} \\
=\lim_{ x \to 0 } \frac{-\tan^2x}{3x^2} \\
=\lim_{ x \to 0 } \frac{-x^2}{3x^2} \\
=-\frac{1}{3}
\end{array}
limx→01−1−2x3x−tanx=limx→0x3x−tanx=limx→03x21−sec2x=limx→03x2−tan2x=limx→03x2−x2=−31
例:等替和四则
limx→0x−arcsinxarctan3x(cosx+2)1.=limx→0x−arcsinxx3(cosx+2)=limx→01−11−x23x2(cosx+2)+x3(−sinx)=limx→0−12x23x2(cosx+2)+x3(−sinx)=limx→0−123(cosx+2)+x(−sinx)=−1182.=limx→0x−arcsinxx3limx→01cosx+2=13limx→0x−arcsinxx3=13limx→01−11−x23x2=13limx→0−12x23x2=−1183.=limx→0x−arcsinx3arctan3x
\begin{array}{}
\lim_{ x \to 0 } \frac{x-\arcsin x}{\arctan^3x(\cos x+2)} \\
1.\qquad=\lim_{ x \to 0 } \frac{x-\arcsin x}{x^3(\cos x+2)} \\
=\lim_{ x \to 0 } \frac{1-\frac{1}{\sqrt{ 1-x^2 }}}{3x^2(\cos x+2)+x^3(-\sin x)} \\
=\lim_{ x \to 0 } \frac{-\frac{1}{2}x^2}{3x^2(\cos x+2)+x^3(-\sin x)} \\
=\lim_{ x \to 0 } \frac{-\frac{1}{2}}{3(\cos x+2)+x(-\sin x)} \\
=-\frac{1}{18} \\
2.\qquad=\lim_{ x \to 0 } \frac{x-\arcsin x}{x^3 }\lim_{ x \to 0 } \frac{1}{\cos x+2} \\
=\frac{1}{3}\lim_{ x \to 0 } \frac{x-\arcsin x}{x^3} \\
=\frac{1}{3}\lim_{ x \to 0 } \frac{1-\frac{1}{\sqrt{ 1-x^2} }}{3x^2} \\
=\frac{1}{3}\lim_{ x \to 0} \frac{-\frac{1}{2}x^2}{3x^2} \\
=- \frac{1}{18} \\
3.\qquad =\lim_{ x \to 0 } \frac{x-\arcsin x}{3\arctan^3x}
\end{array}
limx→0arctan3x(cosx+2)x−arcsinx1.=limx→0x3(cosx+2)x−arcsinx=limx→03x2(cosx+2)+x3(−sinx)1−1−x21=limx→03x2(cosx+2)+x3(−sinx)−21x2=limx→03(cosx+2)+x(−sinx)−21=−1812.=limx→0x3x−arcsinxlimx→0cosx+21=31limx→0x3x−arcsinx=31limx→03x21−1−x21=31limx→03x2−21x2=−1813.=limx→03arctan3xx−arcsinx
若limx→□g(x)=A\lim_{ x \to \Box }g(x)=Alimx→□g(x)=A,则limx→□(f(x)+g(x))=limx→□f(x)+limx→□g(x)=limx→□f(x)+A\lim_{ x \to \Box }(f(x)+g(x))=\lim_{ x \to \Box }f(x)+\lim_{ x \to \Box }g(x)=\lim_{ x \to \Box }f(x)+Alimx→□(f(x)+g(x))=limx→□f(x)+limx→□g(x)=limx→□f(x)+A
若limx→□g(x)=A≠0\lim_{ x \to \Box }g(x)=A\ne 0limx→□g(x)=A=0,则limx→□f(x)g(x)=limx→□f(x)⋅limx→□g(x)=A⋅limx→□f(x)\lim_{ x \to \Box }f(x)g(x)=\lim_{ x \to \Box }f(x)\cdot\lim_{ x \to \Box }g(x)=A\cdot\lim_{ x \to \Box }f(x)limx→□f(x)g(x)=limx→□f(x)⋅limx→□g(x)=A⋅limx→□f(x)
洛必达步骤
- 检测类型
- 化简,化简的方法有
- 等价无穷小替换
- 四则运算
- 上下求导,整理,回到步骤1
2. ∞∞\frac{\infty}{\infty}∞∞型未定式
例
limx→∞x100ex=limx→∞100⋅x99ex=⋯=limx→∞100⋅99⋯⋅1ex=0
\begin{array}{}
\lim_{ x \to \infty } \frac{x^{100}}{e^x} \\
=\lim_{ x \to \infty } \frac{100\cdot x^{99}}{e^x} \\
=\dots =\lim_{ x \to \infty } \frac{100\cdot 99 \dots \cdot1}{e^x} \\
=0
\end{array}
limx→∞exx100=limx→∞ex100⋅x99=⋯=limx→∞ex100⋅99⋯⋅1=0
指≫\gg≫幂≫\gg≫对
ex≫xa≫(lnx)be^{x}\gg x^a\gg(\ln x)^bex≫xa≫(lnx)b
x=elnx≫(lnx)ax=e^{\ln x}\gg(\ln x)^ax=elnx≫(lnx)a
- 抓大头的核心是抓主要部分,先抓类型(指远大于幂远大于对),再抓高次
- 指数函数是否大头,关键在于指数函数是否趋于无穷
- 对∞∞\frac{\infty}{\infty}∞∞型的极限要做到能够口算
{a>1,a+∞=+∞0<a<1,a−∞=+∞ \left\{\begin{matrix} a>1,\qquad a^{+\infty}=+\infty \\ 0<a<1,\qquad a^{-\infty}=+\infty \end{matrix}\right. {a>1,a+∞=+∞0<a<1,a−∞=+∞
3. 0⋅∞0\cdot \infty0⋅∞型与∞−∞\infty-\infty∞−∞型未定式
例
limx→0+x⋅lnx=limx→0+lnx1x=limx→0+1x−1x2=limx→0+−x=0
\begin{array}{}
\lim_{ x \to 0^+ } x\cdot \ln x \\
=\lim_{ x \to 0^+ } \frac{\ln x}{\frac{1}{x}} \\
=\lim_{ x \to 0^+ } \frac{\frac{1}{x}}{-\frac{1}{x^2}} \\
=\lim_{ x \to 0^+ } -x \\
=0
\end{array}
limx→0+x⋅lnx=limx→0+x1lnx=limx→0+−x21x1=limx→0+−x=0
- 借助无穷小量和无穷大量的关系,可以将0⋅∞0\cdot \infty0⋅∞化为01∞\frac{0}{\frac{1}{\infty}}∞10或∞10\frac{\infty}{\frac{1}{0}}01∞,原则是使得导数更简单
- ∞−∞\infty-\infty∞−∞型,如果有分母,一般利用通分转化为00\frac{0}{0}00型
- 没有分母时,一般利用倒代换,将xxx替换成1t\frac{1}{t}t1,构造分母,再进行通分
- 出现根式,通过根式有理化转化为∞∞\frac{\infty}{\infty}∞∞型
4. 幂指函数的极限
- 000^000或∞0\infty^0∞0
对数恒等变形 - 1∞1^{\infty}1∞
对数恒等变形
假设limx→□u(x)v(x)\lim_{ x \to \Box } u(x)^{v(x)}limx→□u(x)v(x)为1∞1^\infty1∞型,也即limx→□u(x)=1\lim_{ x \to \Box }u(x)=1limx→□u(x)=1,limx→□v(x)=∞\lim_{ x \to \Box }v(x)=\inftylimx→□v(x)=∞,
则可以使用公式
limx→□u(x)v(x)=elimx→□(u(x)−1)v(x) \lim_{ x \to \Box }u(x)^{v(x)}=e^{\lim_{ x \to \Box }(u(x)-1)v(x) } x→□limu(x)v(x)=elimx→□(u(x)−1)v(x)
如果极限式的某一部分为幂指函数,而不是整个极限式为幂指函数,无论该幂指函数时什么类型的极限,一律通过对数恒等变形进行变形
4. 泰勒公式
设函数f(x)f(x)f(x)有直至nnn阶导数,当x→x0x\to x_{0}x→x0时,泰勒公式:
f(x)=f(x0)+f′(x0)(x−x0)+f′′(x0)2!(x−x0)2+⋯+fn(x0)n!(x−x0)n+o((x−x0)n)
\begin{array}{}
f(x)=f(x_{0})+f'(x_{0})(x-x_{0})+\frac{f''(x_{0})}{2!}(x-x_{0})^2+ \\
\dots+\frac{f^{n}(x_{0})}{n!}(x-x_{0})^n+o((x-x_{0})^n)
\end{array}
f(x)=f(x0)+f′(x0)(x−x0)+2!f′′(x0)(x−x0)2+⋯+n!fn(x0)(x−x0)n+o((x−x0)n)
意义:把任何一个函数,简化为了幂函数与o((x−x0)n)o((x-x_{0})^n)o((x−x0)n)之和
特殊地,当x0=0x_{0}=0x0=0时,麦克劳林公式:
f(x)=f(0)+f′(0)x+f′′(0)2!x2+⋯+fn(0)n!xn+o(xn)
\begin{array}{}
f(x)=f(0)+f'(0)x+\frac{f''(0)}{2!}x^2+ \\
\dots+\frac{f^{n}(0)}{n!}x^n+o(x^n)
\end{array}
f(x)=f(0)+f′(0)x+2!f′′(0)x2+⋯+n!fn(0)xn+o(xn)
例
limx→0ex−1−xx2=limx→01+x+x22+o(x2)−1−xx2=limx→0x22+o(x2)x2=limx→0x22x2+limx→0o(x2)x2=12+0=12
\begin{array}{}
\lim_{ x \to 0 } \frac{e^x-1-x}{x^2} \\
=\lim_{ x \to 0 } \frac{1+x+\frac{x^2}{2}+o(x^2)-1-x}{x^2} \\
=\lim_{ x \to 0 } \frac{\frac{x^2}{2}+o(x^2)}{x^2} \\
=\lim_{ x \to 0 } \frac{\frac{x^2}{2}}{x^2}+\lim_{ x \to 0 } \frac{o(x^2)}{x^2} \\
=\frac{1}{2}+0 \\
=\frac{1}{2}
\end{array}
limx→0x2ex−1−x=limx→0x21+x+2x2+o(x2)−1−x=limx→0x22x2+o(x2)=limx→0x22x2+limx→0x2o(x2)=21+0=21
常见的麦克劳林公式
ex=1+x+x22!+o(x2)
e^x=1+x+\frac{x^2}{2!}+o(x^2)
ex=1+x+2!x2+o(x2)
ln(1+x)=x−x22+o(x2)
\ln(1+x)=x-\frac{x^2}{2}+o(x^2)
ln(1+x)=x−2x2+o(x2)
(1+x)a=1+ax+a(a−1)2!x2+o(x2)
(1+x)^a=1+ax+\frac{a(a-1)}{2!}x^2+o(x^2)
(1+x)a=1+ax+2!a(a−1)x2+o(x2)
cosx=1+x22!+x44!+o(x4)
\cos x=1+\frac{x^2}{2!}+\frac{x^4}{4!}+o(x^4)
cosx=1+2!x2+4!x4+o(x4)
sinx=x−x33!+o(x3)
\sin x=x-\frac{x^3}{3!}+o(x^3)
sinx=x−3!x3+o(x3)
arcsinx=x+x36+o(x3)
\arcsin x=x+\frac{x^3}{6}+o(x^3)
arcsinx=x+6x3+o(x3)
tanx=x+x33+o(x3)
\tan x=x+\frac{x^3}{3}+o(x^3)
tanx=x+3x3+o(x3)
arctanx=x−x33+o(x3)
\arctan x=x-\frac{x^3}{3}+o(x^3)
arctanx=x−3x3+o(x3)
泰勒公式步骤,展开,合并,替换
等价无穷小替换,低阶吸高阶
exe^xex展开的时候,只需要展开到对应的阶数就可以了,上下同阶
如果式子里没有带次方的,就试,多退少补,直到有一个次方的系数不为零
泰勒公式广义化
将xxx变为□\Box□,当□→0\Box\to 0□→0时
式子仍然成立
limx→0x2−sin2xx4=13
\lim_{ x \to 0 } \frac{x^2-\sin^2x}{x^4}=\frac{1}{3}
x→0limx4x2−sin2x=31
limx→0x−sinxx3=16
\lim_{ x \to 0 } \frac{x-\sin x}{x^3}=\frac{1}{6}
x→0limx3x−sinx=61
极限式中参数的讨论
根据极限的值,让求极限式中的参数
对已知极限值要计算极限式中的参数的问题,运用洛必达法则进行讨论是比较困难的,而运用泰勒公式比较方便、快捷
对抽象函数进行泰勒公式展开的关键是展开到第几项,一般来说,基本原则有两个
- 根据函数本身是几阶可导的,函数nnn阶可导,则皮亚诺余项的泰勒公式就可以展开到第几项
- 保持上下同阶,分子和分母如果有一边能确定阶数,则另一边直接展开到相应的阶数即可
单侧极限
绝大多数极限式不需要考虑单侧极限
两种情况需要考虑
- 分段函数且分段点左右两侧表达式不同时,需要考虑单侧极限
- 极限中含有e∞,arctan∞e^\infty,\arctan ^\inftye∞,arctan∞时,需要考虑单侧极限
数列极限的计算
方法
- 直接计算:将数列极限转换为函数极限来计算
- 数列xn{x_{n}}xn收敛于aaa等价于它的任一子数列也收敛且极限为aaa
- 夹逼准则
- 单调有界收敛准则