考研数学二复习笔记-高等数学-第一章 函数 极限 连续

  • 反函数:
    1.y=sinx -->反函数为 y = arcsinx x∈[- π 2 \frac{π}{2} 2π, π 2 \frac{π}{2} 2π]
    推广: y = π-arcsin x,x∈[ π 2 \frac{π}{2} 2π, 3 2 \frac{3}{2} 23π]
    推算过程:
    y=sinx = sin(π-x)
    因此反函数1. x = arcsiny 2.π-x=arcsiny

    2.y = cosx -->反函数 y = arccos x
    推广:y = arccos x,x∈[0,π]      y = -arccos x,x∈[-π,0]

  • 反三角函数:
    1.arcsin x + arccos x = π 2 \frac{π}{2} 2π ,x∈[-1,1]
    2.arctan x + arccot x = π 2 \frac{π}{2} 2π

    推导过程:
    公式1:
    令 y = arcsin x + arccos x
    y’ = 1 ( 1 − x 2 ) − 1 ( 1 − x 2 ) = 0 \frac{1}{\sqrt (1-x^2)}-\frac{1}{\sqrt (1-x^2)} = 0 ( 1x2)1( 1x2)1=0
    带入 x = 0得到 y = π 2 \frac{π}{2} 2π,导数为0可知这是个常函数。

    公式2同理。

  • 周期性:
    若f(x),g(x)的周期分别为T1,T2,则f(x)±g(x)的周期为T1,T2的最小整数公倍数。

  • 函数的有界,无界,有穷,无穷
    有界无界:在某个点的去心领域至少存在一个点的值是无穷说明函数无界,如果不存在无穷的点说明有界
    有穷无穷:函数趋于某个点或者无穷时,该点去心领域的值全部趋于无穷说明函数无穷,若不存去心领域的值全部趋于无穷,则函数有穷

    举例: y=x sin x
    当 x = 2kπ + π 2 \frac{π}{2} 2π,k ∈ N*时,sin x = 1,如果x 趋于∞,y也就趋于∞
    而 x = kπ,k ∈ N*,sin x = 0,这是个实实在在的0,不管前面的x有多大,相乘还是0
    由此可知这是个无界函数(存在值为无穷的点),但不是无穷函数(不存在某个点的去心领域全为无穷的点)

  • 数列极限存在
    如果数列极限存在,该数列的所有子极限应该存在。
    举例:
    如果 lim ⁡ n → + ∞ x \lim_{n\rightarrow+\infty} x limn+x3n = a
    那么 lim ⁡ n → + ∞ x \lim_{n\rightarrow+\infty} x limn+x3n+1 = lim ⁡ n → + ∞ x \lim_{n\rightarrow+\infty} x limn+x3n+2 = a

  • 需要分左右极限情况
    1.分段函数
    2. e ∞ e^∞ e 例如 lim ⁡ x → ∞ e x \lim_{x\rightarrow\infty} e^x limxex, lim ⁡ x → 0 e 1 x \lim_{x\rightarrow 0} e^\frac{1}{x} limx0ex1
    3.arctan ∞ 例如 lim ⁡ x → ∞ \lim_{x\rightarrow\infty} limxarctan x

  • 有界推导(重点)
    1.f(x)在x∈[a,b]上连续,f(x)在x∈[a,b]上必定有界
    2.f(x)在x∈(a,b)上连续,当 lim ⁡ x → a + x 和 lim ⁡ x → b − x \lim_{x\rightarrow a^+} x 和\lim_{x\rightarrow b^-} x limxa+xlimxbx均存在,f(x)在x∈(a,b)上才有界

  • 无穷个无穷小量的乘积不一定无穷小

  • 无穷大量比较
    x->+∞
    ( ln ⁡ x ) α < < x β < < a x (\ln x)^α << x^β <<a^x (lnx)α<<xβ<<ax,其中 α>0,β>0,a>1 (洛必达法则证明)
    x->∞
    ( l n n ) α < < n β < < n ! < < n n (ln n)^α<<n^β<<n!<<n^n (lnn)α<<nβ<<n!<<nn,其中α>0,β>0,a>1

  • 极限计算
    1. 0 0 或 ∞ ∞ 或 0 ∗ ∞ 模型 \frac{0}{0}或\frac{∞}{∞}或0*∞模型 000模型
    如果是0*∞模型,就改成 0 0 \frac{0}{0} 00除法形式计算
    方法一:洛必达法则
    方法二:等价无穷小
    x->0
    x ~ sin x ~ tan x ~ arcsin x~ arctan x ~ e x − 1 e^x-1 ex1 ~ ln x-1
    1-cos x ~ 1 2 x 2 \frac{1}{2}x^2 21x2            
    a x − 1 a^x-1 ax1 ~ x lna
    ( 1 + x ) a (1+x)^a (1+x)a ~ ax
    1 + x n \sqrt[n]{1+x} n1+x ~ 1 n \frac{1}{n} n1x
    1 + x − 1 − x \sqrt{1+x} - \sqrt{1-x} 1+x 1x ~ x
    推理: ( 1 + x − 1 ) − ( 1 − x − 1 ) (\sqrt{1+x}-1) - (\sqrt{1-x}-1) (1+x 1)(1x 1) ~ ( 1 2 ) − ( − 1 2 ) (\frac{1}{2})-(-\frac{1}{2}) (
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Mystic Musings

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值