- 反函数:
1.y=sinx -->反函数为 y = arcsinx
x∈[- π 2 \frac{π}{2} 2π, π 2 \frac{π}{2} 2π]
推广: y = π-arcsin x,x∈[ π 2 \frac{π}{2} 2π, 3 2 \frac{3}{2} 23π]
推算过程:
y=sinx = sin(π-x)
因此反函数1. x = arcsiny 2.π-x=arcsiny
2.y = cosx -->反函数 y = arccos x
推广:y = arccos x,x∈[0,π] y = -arccos x,x∈[-π,0]
- 反三角函数:
1.arcsin x + arccos x = π 2 \frac{π}{2} 2π ,x∈[-1,1]
2.arctan x + arccot x = π 2 \frac{π}{2} 2π
推导过程:
公式1:
令 y = arcsin x + arccos x
y’ = 1 ( 1 − x 2 ) − 1 ( 1 − x 2 ) = 0 \frac{1}{\sqrt (1-x^2)}-\frac{1}{\sqrt (1-x^2)} = 0 (1−x2)1−(1−x2)1=0
带入 x = 0得到 y = π 2 \frac{π}{2} 2π,导数为0可知这是个常函数。
公式2同理。
- 周期性:
若f(x),g(x)的周期分别为T1,T2,则f(x)±g(x)的周期为T1,T2的最小整数公倍数。
- 函数的有界,无界,有穷,无穷
有界无界:
在某个点的去心领域至少存在一个点的值是无穷
说明函数无界,如果不存在无穷的点说明有界
有穷无穷:
函数趋于
某个点或者无穷时,该点去心领域的值全部趋于无穷
说明函数无穷,若不存去心领域的值全部趋于无穷,则函数有穷
举例: y=x sin x
当 x = 2kπ + π 2 \frac{π}{2} 2π,k ∈ N*时,sin x = 1,如果x 趋于∞,y也就趋于∞
而 x = kπ,k ∈ N*,sin x = 0,这是个实实在在的0,不管前面的x有多大,相乘还是0
。
由此可知这是个无界函数(存在值为无穷的点),但不是无穷函数(不存在某个点的去心领域全为无穷的点)
- 数列极限存在
如果数列极限存在,该数列的所有子极限应该存在。
举例:
如果
lim n → + ∞ x \lim_{n\rightarrow+\infty} x limn→+∞x3n = a
那么
lim n → + ∞ x \lim_{n\rightarrow+\infty} x limn→+∞x3n+1 = lim n → + ∞ x \lim_{n\rightarrow+\infty} x limn→+∞x3n+2 = a
- 需要分左右极限情况
1.分段函数
2. e ∞ e^∞ e∞例如
lim x → ∞ e x \lim_{x\rightarrow\infty} e^x limx→∞ex, lim x → 0 e 1 x \lim_{x\rightarrow 0} e^\frac{1}{x} limx→0ex1
3.arctan ∞例如
lim x → ∞ \lim_{x\rightarrow\infty} limx→∞arctan x
- 有界推导
(重点)
1.f(x)在x∈[a,b]上连续,f(x)在x∈[a,b]上必定有界
2.f(x)在x∈(a,b)上连续,当 lim x → a + x 和 lim x → b − x \lim_{x\rightarrow a^+} x 和\lim_{x\rightarrow b^-} x limx→a+x和limx→b−x均存在,f(x)在x∈(a,b)上才有界
无穷个无穷小量的乘积不一定无穷小
- 无穷大量比较
x->+∞
( ln x ) α < < x β < < a x (\ln x)^α << x^β <<a^x (lnx)α<<xβ<<ax,其中 α>0,β>0,a>1 (洛必达法则证明)
x->∞
( l n n ) α < < n β < < n ! < < n n (ln n)^α<<n^β<<n!<<n^n (lnn)α<<nβ<<n!<<nn,其中α>0,β>0,a>1
- 极限计算
1. 0 0 或 ∞ ∞ 或 0 ∗ ∞ 模型 \frac{0}{0}或\frac{∞}{∞}或0*∞模型 00或∞∞或0∗∞模型
如果是0*∞模型,就改成 0 0 \frac{0}{0} 00的除法形式
计算
方法一:洛必达法则
方法二:等价无穷小
x->0
x ~ sin x ~ tan x ~ arcsin x~ arctan x ~ e x − 1 e^x-1 ex−1 ~ ln x-1
1-cos x ~ 1 2 x 2 \frac{1}{2}x^2 21x2
a x − 1 a^x-1 ax−1 ~ x lna
( 1 + x ) a (1+x)^a (1+x)a ~ ax
1 + x n \sqrt[n]{1+x} n1+x ~ 1 n \frac{1}{n} n1x
1 + x − 1 − x \sqrt{1+x} - \sqrt{1-x} 1+x−1−x ~ x
推理: ( 1 + x − 1 ) − ( 1 − x − 1 ) (\sqrt{1+x}-1) - (\sqrt{1-x}-1) (1+x−1)−(1−x−1) ~ ( 1 2 ) − ( − 1 2 ) (\frac{1}{2})-(-\frac{1}{2}) (