高等数学笔记-极限

极限

数学上:某一个函数中的某一个变量,此变量在变大(或者变小)的永远变化的过程中,逐渐向某一个确定的数值A不断地逼近而“永远不能够重合到A”(“永远不能够等于A,但是取等于A”已经足够取得高精度计算结果)
——简单说:“无限靠近而永远不能到达”。
——极限存在则收敛,极限不存在则发散。

定义:

1.数列极限: ϵ \epsilon ϵ-N) if ∀ ϵ \forall\epsilon ϵ>0, ∃ \exists N>0,当n>N时,| a n a_n an-A|< ϵ \epsilon ϵ    ⟺    \iff lim ⁡ n → ∞ a n = A \lim\limits_{n\to \infty} a_n=A nliman=A
ps: ϵ 为 任 意 小 的 正 数 , a n 为 一 数 列 , N 为 正 整 数 , A 为 数 列 的 极 限 ( 或 称 收 敛 ) \epsilon为任意小的正数,a_n为一数列,N为正整数,A为数列的极限(或称收敛) ϵanNA)

其实就是:数列趋于某数: lim ⁡ n → ∞ a n = A \lim\limits_{n\to \infty} a_n=A nliman=A,这就是一个比较标准的写法,通过| a n a_n an-A|< ϵ \epsilon ϵ表示两者无限接近(接近程度用两个数之差的绝对值表示),其中N是与 ϵ \epsilon ϵ相关的,随 ϵ \epsilon ϵ而定。

举例说明:

数列 X n X_n Xn: 2 , 1 2 , 4 3 , . . . , n + ( − 1 ) n-1 n , . . . 2,\frac{1}{2},\frac{4}{3},...,\cfrac{n +(-1)\raisebox{0.25em}{n-1}}{n},... 2,21,34,...,nn+(1)n-1,... 数列极限
| X n X_n Xn-1|=| ( − 1 ) n-1 1 n (-1)\raisebox{0.25em}{n-1}\frac{1}{n} (1)n-1n1|= 1 n \frac{1}{n} n1

由图和式子我们可知道当n-> ∞ \infty ϵ \epsilon ϵ无限小)时,数列是趋于1.


邻域:无限小的范围(开区间)。U(a, δ \delta δ)=(a- δ \delta δ,a+ δ \delta δ)
去心邻域:把邻域中心a去掉( 图像a为空心点)。 U ˚ \mathring{U} U˚=(a- δ \delta δ,a+ δ \delta δ)
ps:a为邻域的中心, δ \delta δ为邻域的半径(非常小) 。
邻域

可以发现该图其实就是图一在极限1附近的放大版




2.函数极限1—x趋于有限值: ϵ \epsilon ϵ- δ \delta δif ∀ ϵ \forall\epsilon ϵ>0, ∃ δ \exists\delta δ>0, 当0<|x- x 0 x_0 x0|< δ \delta δ时,|f(x)-A|< ϵ \epsilon ϵ    ⟺    \iff lim ⁡ x → x 0 f ( x ) = A \lim\limits_{x\to x_0} f(x)=A xx0limf(x)=A
ps: ϵ 为 \epsilon为 ϵ任意小的正数,f(x)为一函数,N为正整数,A为数列的极限(或称收敛),0<|x- x 0 x_0 x0|< δ \delta δ表示去心邻域(0<|x- x 0 x_0 x0|表示去心),领域半径 δ \delta δ表示x接近a的程度。
在这里插入图片描述
该图为 f ( x ) 当 x → f(x)当x\to f(x)x x 0 x_0 x0时极限A的几何解释:任意给定一正数 ϵ \epsilon ϵ,作平行于x轴的两条直线y=A+ ϵ \epsilon ϵ和y=A- ϵ \epsilon ϵ,介于这两条直线之间的一横条区域。



3.函数极限2—|x|趋于无穷大: ϵ \epsilon ϵ-x) if ∀ ϵ \forall\epsilon ϵ>0, ∃ \exists X>0, 当|x|>X时,|f(x)-A|< ϵ \epsilon ϵ    ⟺    \iff lim ⁡ x → ∞ f ( x ) = A \lim\limits_{x\to\infty} f(x)=A xlimf(x)=A
ps: ϵ 为 任 意 小 的 正 数 , f ( x ) 为 一 函 数 , N 为 正 整 数 , A 为 数 列 的 极 限 ( 或 称 收 敛 ) \epsilon为任意小的正数,f(x)为一函数,N为正整数,A为数列的极限(或称收敛) ϵf(x)NA).
∣ x ∣ 可 表 示 为 x > 0 ( x → + ∞ |x|可表示为x>0(x\to+ \infty xx>0(x+)和 x < 0 ( x → − ∞ x<0(x\to- \infty x<0(x)    ⟺    \iff lim ⁡ x → + ∞ f ( x ) = A \lim\limits_{x\to+\infty} f(x)=A x+limf(x)=A, lim ⁡ x → − ∞ f ( x ) = A \lim\limits_{x\to-\infty} f(x)=A xlimf(x)=A.
举例说明:
在这里插入图片描述
该图为 f ( x ) 当 ∣ x ∣ → f(x)当|x|\to f(x)x ∞ \infty 时极限A的几何解释:作直线y=A- ϵ \epsilon ϵ和y=A+ ϵ \epsilon ϵ,则总有一个正数X存在,使得当x<-X或x>X时,函数y=f(x)的图形位于这两直线之间。

性质:

1.唯一性:存在即唯一

2.局部有界性:若 lim ⁡ x → x 0 f ( x ) = A \lim\limits_{x\to x_0} f(x)=A xx0limf(x)=A,那么存在常数M>0和 δ \delta δ>0,使得当 0 < ∣ x − x 0 ∣ < δ 0<|x-x_0|<\delta 0<xx0<δ时,有|f(x)| ⩽ \leqslant M
  局部(只在去心邻域中): 0 < ∣ x − x 0 ∣ < δ 0<|x-x_0|<\delta 0<xx0<δ。 有界:|f(x)| ⩽ \leqslant M

3.局部保号性:若 lim ⁡ x → x 0 f ( x ) = A \lim\limits_{x\to x_0} f(x)=A xx0limf(x)=A,且A>0(或A<0),那么存在 δ \delta δ>0,使得当 0 < ∣ x − x 0 ∣ < δ 0<|x-x_0|<\delta 0<xx0<δ时,有f(x)>0(或f(x)<0).
  局部(只在去心邻域中): 0 < ∣ x − x 0 ∣ < δ 0<|x-x_0|<\delta 0<xx0<δ。 保号:正负号与极限值一致。

4.函数极限与数列极限的关系 lim ⁡ n → ∞ f ( x n ) \lim\limits_{n\to \infty} f(x_n) nlimf(xn)= lim ⁡ x → x 0 f ( x ) \lim\limits_{x\to x_0} f(x) xx0limf(x)

准则:

1.准则I(夹逼定理)
If a n ⩽ b n ⩽ c n 且 lim ⁡ n → ∞ a n = lim ⁡ n → ∞ c n = A a_n\leqslant b_n\leqslant c_n且\lim\limits_{n\to \infty} a_n=\lim\limits_{n\to \infty}c_n=A anbncnnliman=nlimcn=A   ⇒ \Rarr    lim ⁡ n → ∞ b n = A \lim\limits_{n\to \infty} b_n=A nlimbn=A

2.准则II(单调有界函数必有极限)

  • 2
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值