考研数一|不定积分的计算(笔记)

概念

原函数

设函数 F ( x ) F(x) F(x)在区间 I I I上可导,对区间 I I I上的每一点都有 F ′ ( x ) = f ( x ) F'(x)=f(x) F(x)=f(x),则称函数 F ( x ) F(x) F(x) f ( x ) f(x) f(x)在区间 I I I上的一个原函数

  1. 提到原函数一般要指明区间,不加特别说明的情况下一般默认为 f ( x ) f(x) f(x)的定义域
  2. 如果 f ( x ) f(x) f(x)在区间 I I I上存在原函数,那么它的原函数连续且不唯一
    F ( x ) = x 2 , f ( x ) = 2 x , x 2 是 2 x 的一个原函数 F ( x ) = ln ⁡ x ( x > 0 ) , f ( x ) = 1 x ( x ≠ 0 ) , ln ⁡ x 是 1 x 在 x > 0 上的一个原函数 F ( x ) = ln ⁡ ∣ x ∣ ( x ≠ 0 ) , f ( x ) = 1 x ( x ≠ 0 ) , ln ⁡ x 是 1 x 在 x ≠ 0 上的一个原函数 F ( x ) = x 2 , f ( x ) = 2 x , F ′ ( x ) = f ( x ) , x 2 是 2 x 在 x ∈ R 上的一个原函数 F ( x ) = x 2 + C , C 为任意常数 , f ( x ) = 2 x , F ′ ( x ) = f ( x ) , x 2 + C 是 2 x 在 x ∈ R 上的全体原函数 \begin{array}{} F(x)=x^2,f(x)=2x,x^2是2x的一个原函数 \\ F(x)=\ln x(x>0),f(x)=\frac{1}{x}(x\ne 0),\ln x是 \frac{1}{x}在x>0上的一个原函数 \\ F(x)=\ln |x|(x\ne0),f(x)=\frac{1}{x}(x\ne 0),\ln x是 \frac{1}{x}在x\ne0上的一个原函数 \\ F(x)=x^{2},f(x)=2x,F'(x)=f(x),x^{2}是 2x在x\in R上的一个原函数 \\ F(x)=x^{2}+C,C为任意常数, \\ f(x)=2x,F'(x)=f(x),x^{2}+C是 2x在x\in R上的全体原函数 \end{array} F(x)=x2,f(x)=2x,x22x的一个原函数F(x)=lnx(x>0),f(x)=x1(x=0),lnxx1x>0上的一个原函数F(x)=lnx(x=0),f(x)=x1(x=0),lnxx1x=0上的一个原函数F(x)=x2,f(x)=2x,F(x)=f(x),x22xxR上的一个原函数F(x)=x2+C,C为任意常数,f(x)=2x,F(x)=f(x),x2+C2xxR上的全体原函数
不定积分

函数 f ( x ) f(x) f(x)在区间 I I I上的所有原函数组成的集合,成为 f ( x ) f(x) f(x)在区间 I I I上的不定积分,记作 ∫ f ( x )   d x \int f(x) \, dx f(x)dx
∫ 2 x   d x = x 2 + C 1 ∫ 2 x   d x = x 2 + C 2 ∫ 2 x   d x − ∫ 2 x   d x = C \begin{array}{} \int 2x \, dx=x^2+C_{1} \\ \int 2x \, dx=x^2+C_{2} \\ \int 2x \, dx -\int 2x \, dx =C \end{array} 2xdx=x2+C12xdx=x2+C22xdx2xdx=C

  1. F ( x ) F(x) F(x) f ( x ) f(x) f(x)在区间 I I I上的一个原函数,那么 ∫ f ( x )   d x = F ( x ) + C , C ∈ R \int f(x) \, dx=F(x)+C,C \in R f(x)dx=F(x)+C,CR
  2. 求导数与求不定积分互为逆运算
  3. 不定积分运算时出现任意常数时,一般的运算为 C ± C = C , C 2 = C C\pm C=C,C^{2}=C C±C=C,C2=C

性质

基本性质

f ( x ) , g ( x ) f(x),g(x) f(x),g(x)均存在原函数
∫ [ f ( x ) ± g ( x ) ]   d x = ∫ f ( x )   d x ± ∫ g ( x )   d x \int [f(x)\pm g(x)] \, dx=\int f(x) \, dx \pm \int g(x) \, dx [f(x)±g(x)]dx=f(x)dx±g(x)dx
∫ k f ( x )   d x = k ∫ f ( x )   d x ( k ∈ R , k ≠ 0 ) \int kf(x) \, dx=k\int f(x) \, dx(k \in R,k \ne 0) kf(x)dx=kf(x)dx(kR,k=0)
( ∫ f ( x )   d x ) ′ = f ( x ) 或 d ∫ f ( x )   d x = f ( x ) d x \left( \int f(x) \, dx \right)'=f(x)或 d \int f(x) \, dx=f(x)dx (f(x)dx)=f(x)df(x)dx=f(x)dx
∫ F ′ ( x )   d x = F ( x ) + C 或 ∫ d F ( x )   d x = F ( x ) + C \int F'(x) \, dx=F(x)+C或 \int dF(x) \, dx=F(x)+C F(x)dx=F(x)+CdF(x)dx=F(x)+C
k为与积分变量无关的常数或变量(非零)

  1. k = 0 k=0 k=0时, ∫ k f ( x )   d x = ∫ 0 f ( x )   d x = C \int kf(x) \, dx=\int 0f(x) \, dx=C kf(x)dx=0f(x)dx=C,而 k ∫ f ( x )   d x = 0 ⋅ [ F ( x ) + C ] = 0 k\int f(x) \, dx=0\cdot[F(x)+C]=0 kf(x)dx=0[F(x)+C]=0,两边是不相等的
  2. 不定积分满足线性性质

方法

公式法

∫ x a   d x = 1 a + 1 x a + 1 + C ( a ≠ − 1 ) \int x^{a} \, dx=\frac{1}{a+1}x^{a+1}+C(a\ne-1) xadx=a+11xa+1+C(a=1)
∫ 1 x   d x = ln ⁡ ∣ x ∣ + C \int \frac{1}{x} \, dx=\ln|x|+C x1dx=lnx+C
∫ a x   d x = 1 ln ⁡ a a x + C ( a > 0 且 a ≠ 1 ) \int a^{x} \, dx=\frac{1}{\ln a}a^{x}+C(a>0且a\ne 1) axdx=lna1ax+C(a>0a=1)
∫ e x   d x = e x + C \int e^{x} \, dx=e^{x}+C exdx=ex+C
∫ cos ⁡ x   d x = sin ⁡ x + C \int \cos x \, dx=\sin x+C cosxdx=sinx+C
∫ sin ⁡ x   d x = − cos ⁡ x + C \int \sin x \, dx =-\cos x+C sinxdx=cosx+C
∫ sec ⁡ 2 x   d x = tan ⁡ x + C \int \sec^2x \, dx=\tan x+C sec2xdx=tanx+C
∫ csc ⁡ 2 x   d x = − cot ⁡ x + C \int \csc^2x \, dx=-\cot x+C csc2xdx=cotx+C
∫ sec ⁡ x tan ⁡ x   d x = sec ⁡ x + C \int \sec x\tan x \, dx=\sec x+C secxtanxdx=secx+C
∫ csc ⁡ x cot ⁡ x   d x = − csc ⁡ x + C \int \csc x\cot x \, dx=-\csc x+C cscxcotxdx=cscx+C
∫ 1 1 + x 2   d x = arctan ⁡ x + C \int \frac{1}{1+x^{2}} \, dx=\arctan x+C 1+x21dx=arctanx+C
∫ 1 1 − x 2   d x = arcsin ⁡ x + C \int \frac{1}{\sqrt{ 1-x^{2} }} \, dx=\arcsin x+C 1x2 1dx=arcsinx+C

第一换元积分法(凑微分)

f ( u ) f(u) f(u)有一个原函数 F ( u ) F(u) F(u) u = φ ( x ) u=\varphi(x) u=φ(x)可导,
∫ f [ φ ( x ) ] φ ′ ( x )   d x = ∫ f [ φ ( x ) ]   d φ ( x ) = ∫ f ( u )   d u = F ( u ) + C = F [ φ ( x ) ] + C \begin{array}{} \int f[\varphi(x)]\varphi'(x) \, dx=\int f[\varphi(x)] \, d\varphi(x)= \\ \int f(u) \, du=F(u)+C=F[\varphi(x)]+C \end{array} f[φ(x)]φ(x)dx=f[φ(x)]dφ(x)=f(u)du=F(u)+C=F[φ(x)]+C
理论依据: d φ ( x ) = φ ′ ( x ) d x d\varphi(x)=\varphi'(x)dx dφ(x)=φ(x)dx(双向)
d ( x 2 ) = 2 x d x , d ( x 3 ) = 3 x 2 d x , d ln ⁡ x = 1 x d x 2 x d x = d ( x 2 + C ) , 3 x 2 d x = d ( x 3 + C ) , 1 x d x = d ( ln ⁡ x + C ) \begin{array}{} d(x^{2})=2xdx,d(x^{3})=3x^{2}dx,d\ln x=\frac{1}{x}dx \\ 2xdx=d(x^{2}+C),3x^{2}dx=d(x^{3}+C), \frac{1}{x}dx=d(\ln x+C) \end{array} d(x2)=2xdx,d(x3)=3x2dx,dlnx=x1dx2xdx=d(x2+C),3x2dx=d(x3+C),x1dx=d(lnx+C)
∫ e 2 2 x   d x = ∫ e x 2   d x 2 = ∫ e t   d t = e t + C = e 2 + C \int e^{2}2x \, dx=\int ex^{2} \, dx^{2} =\int e^{t} \, dt=e^{t}+C=e^{2}+C e22xdx=ex2dx2=etdt=et+C=e2+C
∫ e x 2 + 1 2 x   d x = ∫ e x 2 + 1   d ( x 2 + 1 ) = ∫ e t   d t = e t + C = e x 2 + 1 + C \int e^{x^{2}+1}2x \, dx=\int e^{x^{2}+1} \, d(x^{2}+1)=\int e^{t} \, dt=e^{t}+C=e^{x^{2}+1}+C ex2+12xdx=ex2+1d(x2+1)=etdt=et+C=ex2+1+C


∫ ( 7 x − 9 ) 99   d x = ∫ ( 7 x − 9 ) 99   1 7 ⋅ d ( 7 x − 9 ) = 1 7 ∫ t 99   d t = 1 7 ⋅ 1 100 ⋅ t 100 = 1 100 ( 7 x − 9 ) 100 + C \begin{array}{} \int (7x-9)^{99} \, dx \\ =\int (7x-9)^{99} \frac{\,1}{7}\cdot d(7x-9) \\ =\frac{1}{7}\int t^{99} \, dt \\ =\frac{1}{7}\cdot \frac{1}{100} \cdot t^{100} \\ =\frac{1}{100} (7x-9)^{100}+C \end{array} (7x9)99dx=(7x9)9971d(7x9)=71t99dt=711001t100=1001(7x9)100+C
d ( 7 x − 9 ) = 7 d x d(7x-9)=7dx d(7x9)=7dx
d x = 1 7 d ( 7 x − 9 ) dx=\frac{1}{7}d(7x-9) dx=71d(7x9)

  1. 第一换元积分法就是凑微分
  2. 何时使用凑微分是难点,关键是熟悉凑微分公式
  3. 把哪一项凑微分,原则是欺软怕硬,把容易积分的项凑微分

遇到分母三角函数偶次幂时,考虑弦化切割
常用的凑微分公式
arctan ⁡ x + arctan ⁡ 1 x = π 2 \arctan x+\arctan \frac{1}{x}=\frac{\pi}{2} arctanx+arctanx1=2π
x d x = d ( 2 3 x 3 2 ) \sqrt{ x }dx=d\left( \frac{2}{3}x^{\frac{3}{2}} \right) x dx=d(32x23)
d x x = 2 d x \frac{dx}{\sqrt{ x }}=2d\sqrt{ x } x dx=2dx
( ln ⁡ x + 1 ) d x = d x ln ⁡ x (\ln x+1)dx=dx\ln x (lnx+1)dx=dxlnx
ln ⁡ x d x = d ( x ( ln ⁡ x − 1 ) ) \ln xdx=d(x(\ln x-1)) lnxdx=d(x(lnx1))
x ( ln ⁡ x − 1 ) = d ln ⁡ x x(\ln x-1)=d\ln x x(lnx1)=dlnx
( x sec ⁡ 2 x + tan ⁡ x ) d x = d x tan ⁡ x (x\sec^{2}x+\tan x)dx=dx\tan x (xsec2x+tanx)dx=dxtanx
( x + 1 ) e x d x = d x e x (x+1)e^{x}dx=dxe^{x} (x+1)exdx=dxex
∫ f ( x 3 2 ) x   d x = 2 3 ∫ f ( x 3 2 )   d ( x 3 2 ) \int f\left( x^{\frac{3}{2}} \right)\sqrt{ x } \, dx=\frac{2}{3}\int f(x^{\frac{3}{2}}) \, d(x^{\frac{3}{2}}) f(x23)x dx=32f(x23)d(x23)
∫ f ( x ) x   d x = 2 ∫ f ( x )   d x \int \frac{f(\sqrt{ x })}{\sqrt{ x }} \, dx=2\int f(\sqrt{ x }) \, d\sqrt{ x } x f(x )dx=2f(x )dx
∫ ( x ln ⁡ x ) ( ln ⁡ x + 1 )   d x = ∫ f ( x ln ⁡ x )   d ( x ln ⁡ x ) \int (x\ln x)(\ln x+1) \, dx=\int f(x\ln x) \, d(x\ln x) (xlnx)(lnx+1)dx=f(xlnx)d(xlnx)
∫ f ( x ln ⁡ x − x ) ln ⁡ x   d x = ∫ f ( x ln ⁡ x − x )   d ( x ln ⁡ x − x ) \int f(x\ln x-x)\ln x \, dx=\int f(x\ln x-x) \, d(x\ln x-x) f(xlnxx)lnxdx=f(xlnxx)d(xlnxx)
∫ f ( x tan ⁡ x ) ( x sec ⁡ 2 x + tan ⁡ x )   d x = ∫ f ( x tan ⁡ x )   d ( x tan ⁡ x ) \int f(x\tan x)(x\sec^{2}x+\tan x) \, dx=\int f(x\tan x) \, d(x\tan x) f(xtanx)(xsec2x+tanx)dx=f(xtanx)d(xtanx)
∫ f ( x e x ) ( x e x + e x )   d x = ∫ f ( x e x )   d ( x e x ) \int f(xe^{x})(xe^{x}+e^{x}) \, dx=\int f(xe^{x}) \, d(xe^{x}) f(xex)(xex+ex)dx=f(xex)d(xex)

第二换元积分法(三角换元)

a x + b \sqrt{ ax+b } ax+b t = a x + b t=\sqrt{ ax+b } t=ax+b
a 2 − x 2 \sqrt{ a^{2}-x^{2} } a2x2 x = a sin ⁡ t x=a\sin t x=asint
1 + tan ⁡ 2 x = sec ⁡ 2 x 1+\tan^{2}x=\sec^{2}x 1+tan2x=sec2x
sin ⁡ 2 x + cos ⁡ 2 x = 1 \sin ^{2}x+\cos^{2}x=1 sin2x+cos2x=1
sec ⁡ 2 x − 1 = tan ⁡ 2 x \sec^{2}x-1=\tan^{2}x sec2x1=tan2x
x 2 − a 2 \sqrt{ x^{2}-a^{2} } x2a2 x = a sec ⁡ t x=a\sec t x=asect
a 2 + x 2 \sqrt{ a^{2}+x^{2} } a2+x2 x = a tan ⁡ t x=a\tan t x=atant

分部积分法

分部积分公式
∫ u v ′   d x = u v − ∫ u ′ v   d x \int uv' \, dx=uv-\int u'v \, dx uvdx=uvuvdx

∫ u   d v = u v − ∫ v   d u \int u \, dv=uv-\int v \, du udv=uvvdu
让幂函数去求导,变成常数1
∫ sin ⁡ 2 x   d x = ∫ 1 − cos ⁡ 2 x 2   d x = 1 2 x − sin ⁡ 2 x 4 + C \int \sin^{2}x \, dx=\int \frac{1-\cos2x}{2} \, dx= \frac{1}{2}x-\frac{\sin2x}{4}+C sin2xdx=21cos2xdx=21x4sin2x+C
ln ⁡ x \ln x lnx arctan ⁡ x \arctan x arctanx求完导之后都是幂函数
有时候需要凑1来积分,或者使用省略的公式

u ( x ) u(x) u(x)的选取原则, 反、对 > 幂 > 指、三 反、对>幂>指、三 反、对>>指、三
( 1 1 − x ) ′ = 1 ( 1 − x ) 2 \left( \frac{1}{1-x} \right)'= \frac{1}{(1-x)^{2}} (1x1)=(1x)21
∫ x 1 − x 2   d x = − 1 − x 2 + C \int \frac{x}{\sqrt{ 1-x^{2} }} \, dx=-\sqrt{ 1-x^{2} }+C 1x2 xdx=1x2 +C

常考题型

有理函数的积分

有理函数
形如 P n ( x ) Q m ( x ) \frac{Pn(x)}{Qm(x)} Qm(x)Pn(x)的分式称为有理函数,其中 P n ( x ) Pn(x) Pn(x) n n n次多项式, Q m ( x ) Qm(x) Qm(x) m m m次多项式
有理函数积分计算的基本思想是拆分
待定系数法
拆分的方法大致分成三种

  1. 分母形如 ( x + a ) f ( x ) (x+a)f(x) (x+a)f(x),则对应拆出一项 A x + a \frac{A}{x+a} x+aA
  2. 分母形如 ( x + a ) 2 f ( x ) (x+a)^{2}f(x) (x+a)2f(x),则对应拆出两项 A x + a + B ( x + a ) 2 \frac{A}{x+a}+\frac{B}{(x+a)^{2}} x+aA+(x+a)2B
  3. 分母形如 ( x 2 + a x + b ) f ( x ) (x^{2}+ax+b)f(x) (x2+ax+b)f(x),则对应拆出一项 A x + B x 2 + a x + b \frac{Ax+B}{x^{2}+ax+b} x2+ax+bAx+B x 2 + a x + b x^{2}+ax+b x2+ax+b为无实根的二次多项式
    拆成一次项,二次项
    特殊值求系数

裂项
若分子可拆分为分母的两项的和或差,可直接裂项
当两项次数不同时,可考虑分子分母同时乘以 x x x

可化为有理函数的积分

1. 三角有理式

三角有理式,将有理函数中的 x x x换为三角函数,即三角有理式
降幂公式
cos ⁡ 2 x = cos ⁡ 2 x − sin ⁡ 2 x = 2 cos ⁡ 2 x − 1 = 1 − 2 sin ⁡ 2 x \begin{array}{} \cos 2x=\cos^{2}x-\sin^{2}x \\ =2\cos^{2}x-1 \\ =1-2\sin^{2}x \end{array} cos2x=cos2xsin2x=2cos2x1=12sin2x
sin ⁡ 2 x = 2 sin ⁡ x cos ⁡ x \sin 2x=2\sin x\cos x sin2x=2sinxcosx

是偶数次的三角有理式,用降幂,二倍角公式
是奇数次的三角有理式,拆出一个凑微,剩下的用诱导公式
∫ sin ⁡ n x cos ⁡ m x   d x \int \sin^{n}x\cos^{m}x \, dx sinnxcosmxdx

  1. n和m均为偶数,用倍角公式进行降幂化简被积函数后再积分
  2. n,m中至少有一个为奇数,则将奇次幂因子拆出一个一次幂因子并与 d x dx dx凑微分,剩下的偶次幂因子用诱导公式转化为同一种三角函数
    sin ⁡ x = − d cos ⁡ x \sin x=-d\cos x sinx=dcosx
    cos ⁡ x d x = d sin ⁡ x \cos xdx=d\sin x cosxdx=dsinx
  3. 没有奇数次幂,可以分子分母同乘,创造一个奇数次幂
    ∫ sin ⁡ n x cos ⁡ m x   d x \int \frac{\sin^{n}x}{\cos^{m}x} \, dx cosmxsinnxdx
  4. 分母是两项,分母不能提奇数次幂因子的话,把分子拆成分母和分母的导数的线性组合
    ∫ c sin ⁡ x + d cos ⁡ x a sin ⁡ x + b cos ⁡ x   d x \int \frac{c\sin x+d\cos x}{a\sin x+b\cos x} \, dx asinx+bcosxcsinx+dcosxdx
  5. 万能公式
    t = tan ⁡ x 2 t=\tan \frac{x}{2} t=tan2x
    sin ⁡ x = 2 t 1 + t 2 \sin x=\frac{2t}{1+t^{2}} sinx=1+t22t
    cos ⁡ x = 1 − t 2 1 + t 2 \cos x=\frac{1-t^{2}}{1+t^{2}} cosx=1+t21t2
2. 指数有理式

仅含有指数函数 a x a^{x} ax的不定积分,直接令 t = a x t=a^{x} t=ax,可将其化成有理式函数的不定积分
只要遇到指数,就用t代换
如果有多个指数,就让t等于底数最小的

3. 根式

令t等于根式,再反解x

  1. 如果根号下为一次函数 a x + b \sqrt{ ax+b } ax+b ,则直接令整个根式为 t t t
  2. 如果根号下为二次函数,则利用三角代换
    a 2 − x 2 ,令 x = a sin ⁡ t \sqrt{ a^{2}-x^{2} },令x=a\sin t a2x2 ,令x=asint
    a 2 + x 2 ,令 x = a tan ⁡ t \sqrt{ a^{2}+x^{2} },令x=a\tan t a2+x2 ,令x=atant
    x 2 − a 2 ,令 x = a sec ⁡ t \sqrt{ x^{2}-a^{2} },令x=a\sec t x2a2 ,令x=asect
  3. 如果根号下为普通的二次函数(含一次项),则先对其配方,再作对应的三角代换

∫ 1 x 2 ± a 2   d x = ln ⁡ ∣ x ± x 2 ± a 2 ∣ + C \int \frac{1}{\sqrt{ x^{2} \pm a^{2} }} \, dx=\ln|x\pm \sqrt{ x^{2}\pm a^{2} }|+C x2±a2 1dx=lnx±x2±a2 +C

分部积分法的使用

变量代换法可以结合分部积分法进行使用,对于代换进 d x dx dx里的 d φ ( t ) d\varphi(t) dφ(t),可以不将其计算出来,直接进行分部积分
1.
遇到反三角函数,可以考虑先换个元,进而转换成三角函数,令 t = arcsin ⁡ x t=\arcsin x t=arcsinx
公式
1 sin ⁡ x = csc ⁡ x , cos ⁡ x sin ⁡ x = cot ⁡ x , ( csc ⁡ x ) ′ = − csc ⁡ x cot ⁡ x , sin ⁡ 2 x + cos ⁡ 2 x = 1 \frac{1}{\sin x}=\csc x,\frac{\cos x}{\sin x}=\cot x,(\csc x)'=-\csc x\cot x,\sin^{2}x+\cos^{2}x=1 sinx1=cscx,sinxcosx=cotx,(cscx)=cscxcotx,sin2x+cos2x=1
( tan ⁡ x ) ′ = sec ⁡ 2 x , tan ⁡ x = sin ⁡ x cos ⁡ x , ( cos ⁡ x ) ′ = − sin ⁡ x , ( − sin ⁡ x ) d x = d cos ⁡ x (\tan x)'=\sec^{2}x,\tan x= \frac{\sin x}{\cos x},(\cos x)'=-\sin x,(-\sin x)dx=d\cos x (tanx)=sec2x,tanx=cosxsinx,(cosx)=sinx,(sinx)dx=dcosx
( cot ⁡ x ) ′ = − csc ⁡ 2 x , ( ln ⁡ sin ⁡ x ) ′ = cos ⁡ x sin ⁡ x , 1 + cot ⁡ 2 x = csc ⁡ 2 x (\cot x)'=-\csc^{2}x,(\ln \sin x)'=\frac{\cos x}{\sin x},1+\cot^{2}x=\csc^{2}x (cotx)=csc2x,(lnsinx)=sinxcosx,1+cot2x=csc2x
2.
遇到 ∫ e t   d t 2 − b a \int e^{t} \, d \frac{t^{2}-b}{a} etdat2b,化成 ∫ e t 2 a t   d t \int e^{t} \frac{2}{a}t \, dt eta2tdt再用分部
d x = 1 2 x d\sqrt{ x }=\frac{1}{2\sqrt{ x }} dx =2x 1
∫ e x sin ⁡ x   d x = e x 2 ( sin ⁡ x − cos ⁡ x ) + C \int e^{x}\sin x \, dx=\frac{e^{x}}{2}(\sin x-\cos x)+C exsinxdx=2ex(sinxcosx)+C
∫ e x cos ⁡ x   d x = e x 2 ( cos ⁡ x + sin ⁡ x ) + C \int e^{x}\cos x \, dx=\frac{e^{x}}{2}(\cos x+\sin x)+C excosxdx=2ex(cosx+sinx)+C
使用不定积分的关键是先将积分式 ∫ u ( x ) v ′ ( x )   d x \int u(x)v'(x) \, dx u(x)v(x)dx中的 v ′ ( x ) d x v'(x)dx v(x)dx的部分凑成 d v ( x ) dv(x) dv(x),相当于要计算 v ′ ( x ) v'(x) v(x)的一个原函数,这个积分的计算通过一次凑微可得
3.
若遇到 ∫ e a x + b   d x \int e^{\sqrt{ ax+b } }\, dx eax+b dx ∫ sin ⁡ a x + b   d x \int \sin\sqrt{ ax+b } \, dx sinax+b dx ∫ c o a a x + b   d x \int coa\sqrt{ ax+b } \, dx coaax+b dx
a x + b = t \sqrt{ ax+b }=t ax+b =t,微分要计算(求导)
若遇到 ∫ arctan ⁡ a x + b   d x \int \arctan \sqrt{ ax+b }\, dx arctanax+b dx ∫ arcsin ⁡ a x + b   d x \int \arcsin \sqrt{ ax+b } \, dx arcsinax+b dx ∫ ln ⁡ ( C + a x + b )   d x \int \ln(C+\sqrt{ ax+b }) \, dx ln(C+ax+b )dx
a x + b = t \sqrt{ ax+b }=t ax+b =t,微分不必计算,直接用分部积分
4.
若遇到 a x + b c x + d \sqrt{ \frac{ax+b}{cx+d} } cx+dax+b 则令整个根式等于t,反解出x即可,一般要结合分部积分法

分部法除了和换元结合还和乘法公式结合
∫ f ′ ( x )   d x = f ( x ) + C \int f'(x) \, dx=f(x)+C f(x)dx=f(x)+C
除法公式,乘法公式或可以两项相消的
如果发现一个不定积分是有两项构成的,其中一项根本没法积,就可以考虑利用公式,也可以用分部积分法

  • 4
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值