【Leetcode每日一题:1620.网络信号最好的坐标~~~枚举+遍历+模拟】

题目描述

给你一个数组 towers 和一个整数 radius 。

数组 towers 中包含一些网络信号塔,其中 towers[i] = [xi, yi, qi] 表示第 i 个网络信号塔的坐标是 (xi, yi) 且信号强度参数为 qi 。所有坐标都是在 X-Y 坐标系内的 整数 坐标。两个坐标之间的距离用 欧几里得距离 计算。

整数 radius 表示一个塔 能到达 的 最远距离 。如果一个坐标跟塔的距离在 radius 以内,那么该塔的信号可以到达该坐标。在这个范围以外信号会很微弱,所以 radius 以外的距离该塔是 不能到达的 。

如果第 i 个塔能到达 (x, y) ,那么该塔在此处的信号为 ⌊qi / (1 + d)⌋ ,其中 d 是塔跟此坐标的距离。一个坐标的 信号强度 是所有 能到达 该坐标的塔的信号强度之和。

请你返回数组 [cx, cy] ,表示 信号强度 最大的 整数 坐标点 (cx, cy) 。如果有多个坐标网络信号一样大,请你返回字典序最小的 非负 坐标。

注意:

坐标 (x1, y1) 字典序比另一个坐标 (x2, y2) 小,需满足以下条件之一:
要么 x1 < x2 ,
要么 x1 == x2 且 y1 < y2 。
⌊val⌋ 表示小于等于 val 的最大整数(向下取整函数)。

示例 1:

输入:towers = [[1,2,5],[2,1,7],[3,1,9]], radius = 2
输出:[2,1]
解释:
坐标 (2, 1) 信号强度之和为 13

  • 塔 (2, 1) 强度参数为 7 ,在该点强度为 ⌊7 / (1 + sqrt(0)⌋ = ⌊7⌋ = 7
  • 塔 (1, 2) 强度参数为 5 ,在该点强度为 ⌊5 / (1 + sqrt(2)⌋ = ⌊2.07⌋ = 2
  • 塔 (3, 1) 强度参数为 9 ,在该点强度为 ⌊9 / (1 + sqrt(1)⌋ = ⌊4.5⌋ = 4
    没有别的坐标有更大的信号强度。
    示例 2:

输入:towers = [[23,11,21]], radius = 9
输出:[23,11]
解释:由于仅存在一座信号塔,所以塔的位置信号强度最大。
示例 3:

输入:towers = [[1,2,13],[2,1,7],[0,1,9]], radius = 2
输出:[1,2]
解释:坐标 (1, 2) 的信号强度最大。

提示:

1 <= towers.length <= 50
towers[i].length == 3
0 <= xi, yi, qi <= 50
1 <= radius <= 50

解题思路

  1. 这道题目需要我们先枚举所有的坐标,然后根据题目的意思进行模拟遍历就可以了。

实现代码

class Solution {
    public int[] bestCoordinate(int[][] towers, int radius) {
        int xMax = Integer.MIN_VALUE, yMax = Integer.MIN_VALUE;
        for (int[] tower : towers) {
            int x = tower[0], y = tower[1];
            xMax = Math.max(xMax, x);
            yMax = Math.max(yMax, y);
        }
        int cx = 0, cy = 0;
        int res = 0;
        for (int x = 0; x <= xMax; x++) {
            for (int y = 0; y <= yMax; y++) {
                int[] coordinate = {x, y};
                int sum = 0;
                for (int[] tower : towers) {
                    int squaredDistance = getSquaredDistance(coordinate, tower);
                    if (squaredDistance <= radius * radius) {
                        double distance = Math.sqrt(squaredDistance);
                        sum += (int) Math.floor(tower[2] / (1 + distance));
                    }
                }
                if (sum > res) {
                    cx = x;
                    cy = y;
                    res = sum;
                }
            }
        }
        return new int[]{cx, cy};
    }

    public int getSquaredDistance(int[] coordinate, int[] tower) {
        return (tower[0] - coordinate[0]) * (tower[0] - coordinate[0]) + (tower[1] - coordinate[1]) * (tower[1] - coordinate[1]);
    }
}

运行结果

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

硕风和炜

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值