🚀 算法题 🚀 |
🌲 算法刷题专栏 | 面试必备算法 | 面试高频算法 🍀
🌲 越难的东西,越要努力坚持,因为它具有很高的价值,算法就是这样✨
🌲 作者简介:硕风和炜,CSDN-Java领域优质创作者🏆,保研|国家奖学金|高中学习JAVA|大学完善JAVA开发技术栈|面试刷题|面经八股文|经验分享|好用的网站工具分享💎💎💎
🌲 恭喜你发现一枚宝藏博主,赶快收入囊中吧🌻
🌲 人生如棋,我愿为卒,行动虽慢,可谁曾见我后退一步?🎯🎯
🚀 算法题 🚀 |
🚩 题目链接
⛲ 题目描述
给你一个整数数组 nums ,如果 nums 至少 包含 2 个元素,你可以执行以下操作中的 任意 一个:
选择 nums 中最前面两个元素并且删除它们。
选择 nums 中最后两个元素并且删除它们。
选择 nums 中第一个和最后一个元素并且删除它们。
一次操作的 分数 是被删除元素的和。
在确保 所有操作分数相同 的前提下,请你求出 最多 能进行多少次操作。
请你返回按照上述要求 最多 可以进行的操作次数。
示例 1:
输入:nums = [3,2,1,2,3,4]
输出:3
解释:我们执行以下操作:
- 删除前两个元素,分数为 3 + 2 = 5 ,nums = [1,2,3,4] 。
- 删除第一个元素和最后一个元素,分数为 1 + 4 = 5 ,nums = [2,3] 。
- 删除第一个元素和最后一个元素,分数为 2 + 3 = 5 ,nums = [] 。
由于 nums 为空,我们无法继续进行任何操作。
示例 2:
输入:nums = [3,2,6,1,4]
输出:2
解释:我们执行以下操作:
- 删除前两个元素,分数为 3 + 2 = 5 ,nums = [6,1,4] 。
- 删除最后两个元素,分数为 1 + 4 = 5 ,nums = [6] 。
至多进行 2 次操作。
提示:
2 <= nums.length <= 2000
1 <= nums[i] <= 1000
🌟 求解思路&实现代码&运行结果
⚡ 缓存
🥦 求解思路
- 题目突破点,每次操作的时候可以选择题目中规定三个操作中的一个即可,千万注意,每次不是只能选择一种操作,一直进行到底。只要是满足此时对应俩个位置的数值之和等于开始的target,就可以继续该过程。
- 每次有三种选择,而且只要满足此时对应俩个位置之和等于target,每一个选择都可以走,这个过程通过递归来实现。
- 递归会超时,改成缓存即可,当然,最后也可以直接改为递推。
- 有了基本的思路,接下来我们就来通过代码来实现一下。
🥦 实现代码
class Solution {
private int[] nums;
private int[][] map;
public int maxOperations(int[] nums) {
this.nums = nums;
int n = nums.length;
map = new int[n][n];
int res1 = initial(2, n - 1, nums[0] + nums[1]);
int res2 = initial(0, n - 3, nums[n - 2] + nums[n - 1]);
int res3 = initial(1, n - 2, nums[0] + nums[n - 1]);
return Math.max(Math.max(res1, res2), res3) + 1;
}
private int initial(int i, int j, int target) {
for (int[] row : map) {
Arrays.fill(row, -1);
}
return dfs(i, j, target);
}
private int dfs(int i, int j, int target) {
if (i >= j) {
return 0;
}
if (map[i][j] != -1) {
return map[i][j];
}
int res = 0;
if (nums[i] + nums[i + 1] == target) {
res = Math.max(res, dfs(i + 2, j, target) + 1);
}
if (nums[j - 1] + nums[j] == target) {
res = Math.max(res, dfs(i, j - 2, target) + 1);
}
if (nums[i] + nums[j] == target) {
res = Math.max(res, dfs(i + 1, j - 1, target) + 1);
}
return map[i][j] = res;
}
}
🥦 运行结果
💬 共勉
最后,我想和大家分享一句一直激励我的座右铭,希望可以与大家共勉! |