Pandas教程02 - Datafarm创建,常用属性和方法,设置索引
pandas一站式学习->: pandas一站式学习,创建,索引使用,运算,pd可视化柱状图等,csv,hdf5,json格式数据读取存储,NaN值处理,数据离散化,数据合并,交叉表与透视表
python一站式学习->: python一站式学习,python基础,数据类型,numpy,pandas,机器学习,NLP自然语言处理,deepseek大预言模型,Tensorflow,CV视觉
#三大数据结构 1.Datafram 2.Panel(高版本中已经废弃) 3.Series
官网地址:https://pandas.pydata.org/docs/reference/index.html#api
Datafram是什么
简单来说,Datafram是既有行索引,又有列索引的二维数组,类似数据库表一样
ndarray或普通数组转换 Datafarm, 手动指定行列索引
import numpy as np
import pandas as pd
# 制造3个地区,5天的气温变化数据
data = np.random.uniform(10,20,(3,5))
# 保留一位小数
p1 = np.around(data,decimals=1)
#date_range如何使用看下一条
date = pd.date_range(start="20260101",periods=5,freq="D")
city =['city{}'.format(i+1) for i in range(3)]
# ndarray或者普通数组转换 pd中的DataFarm
# 手动指定索引 index=[] 指定行索引,columns=[] 指定列索引
pd1 = pd.DataFrame(p1,index=city,columns=date)
pd1
生成有规律的日期
import pandas as pd
# 生成连续日期
# start开始时间
# end结束时间(periods二选一)
# periods条数(end二选一)
# freq规律 (B工作日,D每天,W-MON每个周一 等)
date = pd.date_range(start="20250508",periods=5,freq="B")
# ['2025-05-08', '2025-05-09', '2025-05-12', '2025-05-13','2025-05-14']
常用属性和方法
# 属性
# 形状
pd1.shape
# 行索引
pd1.index
# 列索引
pd1.columns
pd1.value_counts
# 索引之外的数据
pd1.values
# 行列转置
pd1.T
# 方法
# 返回前几行 默认5行
pd1.head()
#默认返回 后几行,默认5行
p2.tail(2)
重置索引
索引不能单独修改,必须全量修改重新设置索引
原始索引被完全覆盖。
import numpy as np
import pandas as pd
data = np.random.uniform(10,20,(3,5))
pd1 = pd.DataFrame(p1)
# 重设索引,索引不能单独修改,必须全量修改重新设置索引
city =['地区_{}'.format(i+1) for i in range(3)]
pd1.index = city
date = pd.date_range(start="20250508",periods=5,freq="B")
pd1.columns = date
重设索引 data.reset_index()
import numpy as np
import pandas as pd
data = np.random.uniform(10,20,(3,5))
days= pd.date_range(start="20260101",periods=5,freq="D")
city =['city{}'.format(i+1) for i in range(3)]
pd1 = pd.DataFrame(p1,index=city,columns=days)
# keys:传入列名或列名的列表,某列或多列当做索引,不传就添加一个默认顺序索引
# 默认true,当做新索引,删除旧的索引列,false-不删除旧索引,当成一个列保留
# reset_index(keys,drop)
pd1.reset_index(drop=False)