Pandas教程02 - Datafarm创建,常用属性和方法,设置索引

Pandas教程02 - Datafarm创建,常用属性和方法,设置索引

pandas一站式学习->: pandas一站式学习,创建,索引使用,运算,pd可视化柱状图等,csv,hdf5,json格式数据读取存储,NaN值处理,数据离散化,数据合并,交叉表与透视表


python一站式学习->: python一站式学习,python基础,数据类型,numpy,pandas,机器学习,NLP自然语言处理,deepseek大预言模型,Tensorflow,CV视觉


#三大数据结构 1.Datafram 2.Panel(高版本中已经废弃) 3.Series

官网地址:https://pandas.pydata.org/docs/reference/index.html#api

Datafram是什么

简单来说,Datafram是既有行索引,又有列索引的二维数组,类似数据库表一样

ndarray或普通数组转换 Datafarm, 手动指定行列索引

import numpy as np 
import pandas as pd

# 制造3个地区,5天的气温变化数据
data = np.random.uniform(10,20,(3,5))
# 保留一位小数
p1 = np.around(data,decimals=1)

#date_range如何使用看下一条
date = pd.date_range(start="20260101",periods=5,freq="D") 
city =['city{}'.format(i+1) for i in range(3)]

# ndarray或者普通数组转换 pd中的DataFarm
# 手动指定索引 index=[] 指定行索引,columns=[] 指定列索引
pd1 = pd.DataFrame(p1,index=city,columns=date)
pd1

在这里插入图片描述

生成有规律的日期

import pandas as pd

# 生成连续日期
# start开始时间   
# end结束时间(periods二选一) 
# periods条数(end二选一)  
# freq规律 (B工作日,D每天,W-MON每个周一 等)
date = pd.date_range(start="20250508",periods=5,freq="B") 
#  ['2025-05-08', '2025-05-09', '2025-05-12', '2025-05-13','2025-05-14']

常用属性和方法

# 属性

# 形状
pd1.shape

# 行索引
pd1.index

# 列索引
pd1.columns

pd1.value_counts

# 索引之外的数据
pd1.values

# 行列转置
pd1.T

# 方法

# 返回前几行  默认5行
pd1.head()

#默认返回 后几行,默认5行
p2.tail(2)

重置索引

索引不能单独修改,必须全量修改重新设置索引
原始索引被完全覆盖。

import numpy as np 
import pandas as pd

data = np.random.uniform(10,20,(3,5))
pd1 = pd.DataFrame(p1)

# 重设索引,索引不能单独修改,必须全量修改重新设置索引
city =['地区_{}'.format(i+1) for i in range(3)]
pd1.index = city
date = pd.date_range(start="20250508",periods=5,freq="B") 
pd1.columns = date

在这里插入图片描述

重设索引 data.reset_index()

import numpy as np 
import pandas as pd

data = np.random.uniform(10,20,(3,5))

days= pd.date_range(start="20260101",periods=5,freq="D") 
city =['city{}'.format(i+1) for i in range(3)]

pd1 = pd.DataFrame(p1,index=city,columns=days)

# keys:传入列名或列名的列表,某列或多列当做索引,不传就添加一个默认顺序索引
# 默认true,当做新索引,删除旧的索引列,false-不删除旧索引,当成一个列保留
# reset_index(keys,drop)
pd1.reset_index(drop=False)

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值