Java初解背包问题

Java初解背包问题

经典背包问题:

有n个重量和价值分别为w和v的物品,从这些物品中挑选出总重量不超过W的物品,求所有挑选方案中价值总和的最大值。

限制条件: 1<= n <=100

1<=w,v,<=100

1<= W <=1000

样例:

输入:

n=4 {w,v} = {{2,3},{1,2},{3,4},{2,2}} W = 5

输出:

7

解法一:

针对每个物品是否放入背包进行搜索试试

代码:

package thebackage;

/*
 * 背包问题解法一
 */
public class FirstB {
	int AW = 0;
	int n;
	int[] weight;
	int[] value;
	public FirstB(int n,int[] weight,int[] value) {
			this.n = n;
			this.weight = weight;
			this.value = value;
	}
	public int FtheMax(int i,int j) {
		
		if (n==i) {
		//没有剩余物品
			AW=0;
		} else if(weight[i]>j){
		//无法挑选这个物品
			AW=FtheMax(i+1, j);
		} else {
		//在挑选和不挑选进行搜索
			AW=max(FtheMax(i+1, j), FtheMax(i+1,j-weight[i])+value[i]);
		}
		return AW;
	}
	
	public int  max(int a,int b) {
		if (a>b) {
			return a;
		}else {
			return b;
		}
		
	}
	public static void main(String[] args) {
			int n=4;
			int w=5;
			int[] value = {3,2,4,2};
			int[] weight = {2,1,3,2};
			FirstB firstB = new FirstB(n, weight, value);
			System.out.println(firstB.FtheMax(0, w));
			
	}

}
这种解法搜索深度为n,并且每一层都需要两次分支,最坏需要O(2^n)的时间
解法2可以尝试利用记忆化搜索进行优化

先上代码:

package thebackage;

/**
 * 
 * @author linziyu
 *优化背包问题
 */
public class SecondB {
		
	int n;
	int[] value;
	int[] weight;
	int values = 0;
	int[][] dp = new int[100][100];//进行结果记录
	
	public SecondB(int n,int[] value,int[] weight) {
			this.n = n;
			this.value = value;
			this.weight = weight;

	}
	
	public int theBest(int i,int weights) {
		if (dp[i][weights]>0) {
		//已经计算过的话直接使用之前的结果
			return dp[i][weights];
		}  
		
		if(i==n){
			values=0;
		} else if (weight[i]>weights) {
			values=theBest(i+1, weights);
		} else {
			values=max(theBest(i+1, weights), theBest(i+1,weights-weight[i])+value[i]);
			
		}
		//将结果记录在数组中
		return dp[i][weights]=values;
		
	}
	
	public int max(int a,int b) {
		if (a>b) {
			return a;
		} else {
			return b;
		}
	}
	
	
	
	public static void main(String[] args) {
		int n=4;
		int w=5;
		int[] value = {3,2,4,2};
		int[] weight = {2,1,3,2};
		SecondB secondB = new SecondB(n, value, weight);
		System.out.println(secondB.theBest(0,w));
		
	}

}

此优化可以使得对于同样的参数,只会在第一次被调用到时执行递归部分,第二次之后都会直接返回,参数组合不过nW中, 所以只需O(nW)的复杂度就可以解决。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值