Datawhale组队学习之集成学习——Task5 Bagging

目录

一、投票法

投票法是集成学习中常用的技巧,可以帮助我们提高模型的泛化能力,减少模型的错误率。

1、投票法的原理

  投票法是一种遵循少数服从多数原则的集成学习模型,通过多个模型的集成降低方差,从而提高模型的鲁棒性。在理想情况下,投票法的预测效果应当优于任何一个基模型的预测效果。

  投票法在回归模型与分类模型上均可使用:

  • 回归投票法:预测结果是所有模型预测结果的平均值。
  • 分类投票法:预测结果是所有模型中出现最多的预测结果。

  分类投票法又可以被划分为硬投票与软投票:

  • 硬投票:预测结果是所有投票结果最多出现的类。
  • 软投票:预测结果是所有投票结果中概率加和最大的类。

  相对于硬投票,软投票法考虑到了预测概率这一额外的信息,因此可以得出比硬投票法更加准确的预测结果。

  在投票法中,我们还需要考虑到不同的基模型可能产生的影响。理论上,基模型可以是任何已被训练好的模型。但在实际应用上,想要投票法产生较好的结果,需要满足两个条件:

  • 基模型之间的效果不能差别过大。当某个基模型相对于其他基模型效果过差时,该模型很可能成为噪声。
  • 基模型之间应该有较小的同质性。例如在基模型预测效果近似的情况下,基于树模型与线性模型的投票,往往优于两个树模型或两个线性模型。

  当投票合集中使用的模型能预测出清晰的类别标签时,适合使用硬投票。当投票集合中使用的模型能预测类别的概率时,适合使用软投票。软投票同样可以用于那些本身并不预测类成员概率的模型,只要他们可以输出类似于概率的预测分数值(例如支持向量机、k-最近邻和决策树)。

  投票法的局限性在于,它对所有模型的处理是一样的,这意味着所有模型对预测的贡献是一样的。如果一些模型在某些情况下很好,而在其他情况下很差,这是使用投票法时需要考虑到的一个问题。

2、投票法的案例分析

  基于sklearn,介绍pipe管道的使用以及voting的使用
  Sklearn中提供了 VotingRegressor 与 VotingClassifier 两个投票方法。这两种模型的操作方式相同,并采用相同的参数。使用模型需要提供一个模型列表,列表中每个模型采用Tuple的结构表示,第一个元素代表名称,第二个元素代表模型,需要保证每个模型必须拥有唯一的名称。
代码如下(示例):

from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC
from sklearn.ensemble import VotingClassifier
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler
#我们定义两个模型
models = [('lr',LogisticRegression()),('svm',make_pipeline(StandardScaler(),SVC()))]
ensemble = VotingClassifier(estimators=models, voting='soft')

我们创建一个1000个样本,20个特征的随机数据集,多个KNN模型作为基模型演示投票法

# test classification dataset
from sklearn.datasets import make_classification
# define dataset
def get_dataset():
    X, y = make_classification(n_samples=1000, n_features=20, n_informative=15, n_redundant=5, random_state=2)
    # summarize the dataset
    return X,y
# get a voting ensemble of models
def get_voting():
    # define the base models
    models = list()
    models.append(('knn1', KNeighborsClassifier(n_neighbors=1)))
    models.append(('knn3', KNeighborsClassifier(n_neighbors=3)))
    models.append(('knn5', KNeighborsClassifier(n_neighbors=5)))
    models.append(('knn7', KNeighborsClassifier(n_neighbors=7)))
    models.append(('knn9', KNeighborsClassifier(n_neighbors=9)))
    # define the voting ensemble
    ensemble = VotingClassifier(estimators=models, voting='hard')
    return ensemble
# get a list of models to evaluate
def get_models():
    models = dict()
    models['knn1'] = KNeighborsClassifier(n_neighbors=1)
    models['knn3'] = KNeighborsClassifier(n_neighbors=3)
    models['knn5'] = KNeighborsClassifier(n_neighbors=5)
    models['knn7'] = KNeighborsClassifier(n_neighbors=7)
    models['knn9'] = KNeighborsClassifier(n_neighbors=9)
    models['hard_voting'] = get_voting()
    return models
# evaluate a give model using cross-validation
from sklearn.model_selection import cross_val_score   #Added by ljq
def evaluate_model(model, X, y):
    cv = RepeatedStratifiedKFold(n_splits=10, n_repeats=3, random_state=1)
    scores = cross_val_score(model, X, y, scoring='accuracy', cv=cv, n_jobs=-1, error_score='raise')
    return scores
from sklearn.neighbors import KNeighborsClassifier
from matplotlib import pyplot
# define dataset
X, y = get_dataset()
# get the models to evaluate
models = get_models()
# evaluate the models and store results
results, names = list(), list()
for name, model in models.items():
    scores = evaluate_model(model, X, y)
    results.append(scores)
    names.append(name)
    print('>%s %.3f (%.3f)' % (name, mean(scores), std(scores)))
# plot model performance for comparison
pyplot.boxplot(results, labels=names, showmeans=True)
pyplot.show()

knn1 0.873 (0.030)
knn3 0.889 (0.038)
knn5 0.895 (0.031)
knn7 0.899 (0.035)
knn9 0.900 (0.033)
hard_voting 0.902 (0.034)
在这里插入图片描述

二、bagging

与投票法不同的是,Bagging不仅仅集成模型最后的预测结果,同时采用一定策略来影响基模型训练,保证基模型可以服从一定的假设。在上一章中我们提到,希望各个模型之间具有较大的差异性,而在实际操作中的模型却往往是同质的,因此一个简单的思路是通过不同的采样增加模型的差异性。

1、bagging的原理

  Bagging的核心在于自助采样(bootstrap)这一概念,即有放回的从数据集中进行采样,也就是说,同样的一个样本可能被多次进行采样。一个自助采样的小例子是我们希望估计全国所有人口年龄的平均值,那么我们可以在全国所有人口中随机抽取不同的集合(这些集合可能存在交集),计算每个集合的平均值,然后将所有平均值的均值作为估计值。

  首先我们随机取出一个样本放入采样集合中,再把这个样本放回初始数据集,重复K次采样,最终我们可以获得一个大小为K的样本集合。同样的方法, 我们可以采样出T个含K个样本的采样集合,然后基于每个采样集合训练出一个基学习器,再将这些基学习器进行结合,这就是Bagging的基本流程。

  对回归问题的预测是通过预测取平均值来进行的。对于分类问题的预测是通过对预测取多数票预测来进行的。Bagging方法之所以有效,是因为每个模型都是在略微不同的训练数据集上拟合完成的,这又使得每个基模型之间存在略微的差异,使每个基模型拥有略微不同的训练能力。

  Bagging同样是一种降低方差的技术,因此它在不剪枝决策树、神经网络等易受样本扰动的学习器上效果更加明显。在实际的使用中,加入列采样的Bagging技术对高维小样本往往有神奇的效果。

2、bagging的案例分析

  Sklearn为我们提供了 BaggingRegressorBaggingClassifier 两种Bagging方法的API,我们在这里通过一个完整的例子演示Bagging在分类问题上的具体应用。这里两种方法的默认基模型是树模型。
  这里的树模型一般指决策树,它是一种树形结构,树的每个非叶子节点表示对样本在一个特征上的判断,节点下方的分支代表对样本的划分。决策树的建立过程是一个对数据不断划分的过程,每次划分中,首先要选择用于划分的特征,之后要确定划分的方案(类别/阈值)。我们希望通过划分,决策树的分支节点所包含的样本“纯度”尽可能地高。节点划分过程中所用的指标主要是信息增益和GINI系数。
  信息增益衡量的是划分前后信息不确定性程度的减小。信息不确定程度一般使用信息熵来度量,其计算方式是:
H ( Y ) = − ∑ p i l o g p i H(Y) = -\sum{p_ilogp_i} H(Y)=pilogpi
  其中i表示样本的标签,p表示该类样本出现的概率。当我们对样本做出划分之后,计算样本的条件熵:
H ( Y ∣ X ) = − ∑ x ∈ X p ( X = x ) H ( Y ∣ X = x ) H(Y|X) = -\sum_{x\in X}p(X=x){H(Y|X=x)} H(YX)=xXp(X=x)H(YX=x)

  其中x表示用于划分的特征的取值。信息增益定义为信息熵与条件熵的差值:
I G = H ( Y ) − H ( Y ∣ X ) IG = H(Y) - H(Y|X) IG=H(Y)H(YX)

  信息增益IG越大,说明使用该特征划分数据所获得的信息量变化越大,子节点的样本“纯度”越高。

  同样的,我们也可以利用Gini指数来衡量数据的不纯度,计算方法如下:
G i n i = 1 − ∑ p i 2 Gini = 1 - \sum{p_i^2} Gini=1pi2
  当我们对样本做出划分后,计算划分后的Gini指数:
G i n i x = ∑ x ∈ X p ( X = x ) [ 1 − ∑ p i 2 ] Gini_x = \sum_{x\in X}p(X=x)[1 - \sum{p_i^2}] Ginix=xXp(X=x)[1pi2]
  一般来说,我们选择使得划分后Gini指数最小的特征(注意这里是直接根据Gini指数进行判断,而并非其变化量)。
  Bagging的一个典型应用是随机森林。顾名思义,“森林”是由许多“树”bagging组成的。在具体实现上,用于每个决策树训练的样本和构建决策树的特征都是通过随机采样得到的,随机森林的预测结果是多个决策树输出的组合(投票)。

下面我们使用sklearn来实现基于决策树方法的bagging策略。
我们创建一个含有1000个样本20维特征的随机分类数据集,我们将使用重复的分层k-fold交叉验证来评估该模型,一共重复3次,每次有10个fold。我们将评估该模型在所有重复交叉验证中性能的平均值和标准差。
代码如下(示例):

# test classification dataset
from sklearn.datasets import make_classification
# define dataset
X, y = make_classification(n_samples=1000, n_features=20, n_informative=15, 
                           n_redundant=5, random_state=5)
# summarize the dataset
print(X.shape, y.shape)
# evaluate bagging algorithm for classification
from numpy import mean
from numpy import std
from sklearn.datasets import make_classification
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import RepeatedStratifiedKFold
from sklearn.ensemble import BaggingClassifier
# define dataset
X, y = make_classification(n_samples=1000, n_features=20, n_informative=15, n_redundant=5, random_state=5)
# define the model
model = BaggingClassifier()
# evaluate the model
cv = RepeatedStratifiedKFold(n_splits=10, n_repeats=3, random_state=1)
n_scores = cross_val_score(model, X, y, scoring='accuracy', cv=cv, n_jobs=-1, error_score='raise')
# report performance
print('Accuracy: %.3f (%.3f)' % (mean(n_scores), std(n_scores)))

三、作业

(1)什么是bootstraps

  • 在统计学中,Bootstrap法具体是指用原样本自身的数据抽样得出新的样本及统计量。它是一类非参数Monte Carlo方法,其实质是对观测信息进行再抽样,进而对总体的分布特性进行统计推断。
    在这里插入图片描述

(2)bootstraps与bagging的联系

  • 机器学习集成算法中的Bagging装袋算法就是基于bootstrap的一种算法,它其实和袋子没有什么关系,这么叫只是为了好听顺口和便于记忆,它的全称是Bootstrap aggregating自助聚合算法。Bagging方法是一个统计重采样的技术,它的基础是Bootstrap。基本思想是:利用Bootstrap方法重采样来生成多个版本的预测分类器(样本选择),然后把这些分类器进行组合。最终的决策采用投票方式,对回归问题采用简单平均方法对新示例进行判别(分类器组合)。
    在这里插入图片描述

(3)什么是bagging

  • 见问题(2)

(4)随机森林与bagging的联系与区别

  • Random Forest,Bagging的一种变形,基学习器指定为决策树,在训练过程中加入随机属性选择。传统决策树训练过程是选择一个最优属性来进行分类划分,而随机森林是先选取一部分属性,再从中选择最优划分属性,这样会让训练过程更快,计算开销小。
  • Bagging和随机森林都是集成学习,由多个部分样本训练的基学习器共同投票/平均。随机森林在Bagging基础上加入了随机属性选择,一般来说随机森林的训练效率要优于bagging。

(5)使用偏差与方差理论阐述为什么bagging能提升模型的预测精度

  • 在集成算法中,bagging 方法会在原始训练集的随机子集上构建一类黑盒估计器的多个实例,然后把这些估计器的预测结果结合起来形成最终的预测结果。 该方法通过在构建模型的过程中引入随机性,来减少基估计器的方差(例如,决策树)。 在多数情况下,bagging 方法提供了一种非常简单的方式来对单一模型进行改进,而无需修改背后的算法。 因为 bagging 方法可以减小过拟合,此时虽然增大了偏差但是降低了方差,所以通常在强分类器和复杂模型上使用时表现的很好(例如,完全决策树,fully developed decision trees)。

(6)请尝试使用bagging与基本分类模型或者回归模型做对比,观察bagging是否相对于基础模型的精度有所提高

  • 见 bagging 案例分析

(7)假如让你来实现bagging,你会使用python+numpy+sklearn的基础模型来实现bagging吗

  • 会的,因为bagging是一种用来提高学习算法准确度的方法,这种方法通过构造一个预测函数系列,以一定的方式将它们组合成一个预测函数。通过对基础模型进行集成,bagging能取得由于基础模型更好的预测效果。

参考

【1】https://zhuanlan.zhihu.com/p/261387233
【2】https://www.bilibili.com/video/BV1Mb4y1o7ckfrom=search&seid=6085778383215596866
【3】https://github.com/datawhalechina/ensemble-learning

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值