论文阅读:GridDehazeNet: Attention-Based Multi-Scale Network for Image Dehazing


引言

论文链接:https://arxiv.org/abs/1908.03245v1
代码链接:https://github.com/proteus1991/GridDehazeNet

一、概述

GridDehazeNet是一个端到端可训练的神经网络,被设计用来去雾。主要有如下贡献:
(1)该方法不依赖于大气散射模型;
对于图像恢复问题,通常需要使用物理模型来合成数据集,那么针对该数据集训练出的去雾模型是否也适应其他的情况,就是说该物理模型是否具有一定的代表性。
(2)预处理模型是可以训练的,相比于人工选择的方法更具有灵活性;
预处理方法通常是基于启发式的,要具体问题具体分析。
(3)基于注意力机制旧的多尺度网络可以较好的估计模型中的参数,该网络可以高效的交换不同尺度的信息,从而有效缓解多尺度估计的瓶颈问题。
有雾图像与去雾图像之间关系极为复杂,建模后设计高维参数。多尺度估计:①用低维模型近似高维模型②基于训练数据评估低维模型参数③参数化估计的低维模型的邻域,执行精细估计来解决此问题,如果需要,重复这个过程。显然,一个尺度上的估计精度将影响下一个尺度上的估计精度。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值