引言
论文链接:https://arxiv.org/abs/1908.03245v1
代码链接:https://github.com/proteus1991/GridDehazeNet
一、概述
GridDehazeNet是一个端到端可训练的神经网络,被设计用来去雾。主要有如下贡献:
(1)该方法不依赖于大气散射模型;
对于图像恢复问题,通常需要使用物理模型来合成数据集,那么针对该数据集训练出的去雾模型是否也适应其他的情况,就是说该物理模型是否具有一定的代表性。
(2)预处理模型是可以训练的,相比于人工选择的方法更具有灵活性;
预处理方法通常是基于启发式的,要具体问题具体分析。
(3)基于注意力机制旧的多尺度网络可以较好的估计模型中的参数,该网络可以高效的交换不同尺度的信息,从而有效缓解多尺度估计的瓶颈问题。
有雾图像与去雾图像之间关系极为复杂,建模后设计高维参数。多尺度估计:①用低维模型近似高维模型②基于训练数据评估低维模型参数③参数化估计的低维模型的邻域,执行精细估计来解决此问题,如果需要,重复这个过程。显然,一个尺度上的估计精度将影响下一个尺度上的估计精度。