汉诺塔问题学习笔记

Hanoi问题代码(含测试和说明)

#include "stdafx.h"

/**
 * Hanoi.
 */
void hanoi(int paraN, char paraSource, char paraDestination, char paraTransit) {	
	if (paraN == 1) {
		printf("当前在执行 %c -%d-> %c 的全部转移,出发地址:%d,目标地址:%d, 过渡地址:%d \r\n\t 此时直接移动:%c -> %c \r\n", paraSource ,paraN ,paraDestination, &paraSource, &paraDestination, &paraTransit, paraSource, paraDestination);
	} else {
		printf("当前在执行 %c -%d-> %c 的初始转移, 出发地址:%d,目标地址:%d, 过渡地址:%d \r\n", paraSource ,paraN ,paraDestination, &paraSource, &paraDestination, &paraTransit);
		hanoi(paraN - 1, paraSource, paraTransit, paraDestination);
		
		printf("当前在执行 %c -%d-> %c 的中间转移,没有调用hanoi函数 \r\n\t 此时直接移动:%c -> %c \r\n",paraSource ,paraN ,paraDestination, paraSource, paraDestination);
		
		printf("当前在执行 %c -%d-> %c 的最终转移, 出发地址:%d,目标地址:%d, 过渡地址:%d \r\n", paraSource ,paraN ,paraDestination, &paraSource, &paraDestination, &paraTransit);
		hanoi(paraN - 1, paraTransit, paraDestination, paraSource);
	}// Of if
}// Of hanoi

/**
 * Test the hanoi function.
 */
void hanoiTest() {
    printf("---- addToTest begins. ----\r\n");

	printf(" \r\n 3 plates\r\n");
	hanoi(3, 'A', 'B', 'C');

	printf("\r\n 4 plates\r\n");
	hanoi(4, 'A', 'B', 'C');

    printf("\r\n---- addToTest ends. ----\r\n");
}// Of addToTest

/**
 The entrance.
 */
int _tmain(int argc, _TCHAR* argv[])
{
	hanoiTest();
	return 0;
}// of tmain

输出:
3层塔:
在这里插入图片描述
4层塔:
在这里插入图片描述


1 自顶向下,逐步求精

目前软件开发方法使用最广泛的,当属结构化的方法和面向对象的方法。其中,结构化程序设计支持“自顶向下,逐步求精”的程序设计方法。
一个非常简洁而有力的例子,把大象装进冰箱,不管多么离谱,终归是将原问题分解为:开冰箱,装大象,关冰箱。其中开关冰箱是两个小问题,和原问题相比,装大象是一个中问题。
自顶向下,逐步求精

2 分治与递归

把hanoi塔问题视为一个函数、操作,n个盘子的出发柱A转移到目标柱B,记作A -n-> B,该操作需要借助的过渡柱C,并满足相应规则。
那么必然有:

A -n-> B = A -(n-1)-> C 然后 A -1-> B 然后 C -(n-1)-> A
其中,A -(n-1)-> C 表示将A的上面n-1个盘子移动到C。不用加法来简记,是因为上面的过程不满足交换律。

  该过程就实现了分治:把一个大问题分解为完全相同的小问题。用递归可以很好的实现,参看代码。

3 一些细节

  • 不要跨层分析,在设计时也不需要太关注细节;
  • 函数定义时的形参命名一定要规范,并注意与实际调用函数时的实参进行对比;
  • 汉诺塔问题本身是非常简单的,只要明白n层塔的转移可分解为两次n-1层塔的转移和一次中间转移,那么逻辑上,乃至代码上都是足够清晰和简洁的;
  • 但通过打印地址和辅助输出,来仔细理解整个过程——尤其是在计算机内的运转过程,这是非常重要的。

4 时间复杂度

O ( 2 n ) O(2^n) O(2n)
说明:由

A -n-> B = A -(n-1)-> C 然后 A -1-> B 然后 C -(n-1)-> A
故有

T ( n ) = T ( n − 1 ) + 1 + T ( n − 1 ) = 2 T ( n − 1 ) + 1 → T n + 1 = 2 ( T n − 1 + 1 ) T(n)=T(n-1)+1+T(n-1)=2T(n-1)+1\rightarrow T_n+1=2(T_{n-1}+1) T(n)=T(n1)+1+T(n1)=2T(n1)+1Tn+1=2(Tn1+1)
   → T n + 1 = ( T 1 + 1 ) n − 1 = 2 n → T n = 2 n − 1 \rightarrow T_n+1=(T_1+1)^{n-1}=2^n \rightarrow T_n=2^n-1 Tn+1=(T1+1)n1=2nTn=2n1

5 空间复杂度

O ( n ) O(n) O(n)
说明:红框里就是栈,n个盘子时一直没超过n,代码详细地展示了整个运行过程,不再详述。
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值