SIMPL: A Simple and Efficient Multi-agent Motion Prediction Baseline for Autonomous Driving
这项工作发布于2023年,作者团队来自于香港科技大学。
Abstract
本文方法提出了一种用于自动驾驶汽车的简单且高效的运动预测基线(Simple and effIcient Motion Prediction baseLine,SIMPL)模型。过去的agent-centric方法可以在运动预测任务上取得较好的精度,但是代价是需要以每一个目标代理作为场景的中心对整个场景进行标准化,从而带来了庞大的计算开销,而scene-centric方法尽管解决了上述计算开销的问题,但是其精度和泛化能力较差(泛化能力差的原因是失去了视角不变性)。
本文所提出的SIMPL与上述agent-centric和scene-centric方法不同,SIMPL是一种可以对场景中所有相关的交通参与者进行实时且准确的运动预测的方法。
为了使得SIMPL具有较好的精度以及较快的推理速度,本文方法提出了一种紧致且高效的全局特征提取模块,它能够以对称的方式直接进行消息传递,使得模型可以在单次前向传播中完成场景中所有代理的未来运动预测,并且不会由于视角的改变而产生精度的丢失。
此外,本文方法使用Bernstein基多项式(Bernstein basis polynomials)来在轨迹解码阶段对连续的轨迹进行参数化,使得预测轨迹的状态可以得到分析,有助于下游的运动规划任务。
作为一个强大的基线方法,SIMPL在Argoverse 1和Argoverse 2上取得了极具竞争力的结果,与SOTA方法相近。此外,SIMPL具有轻量化的模型设计以及较快的推理速度,使得SIMPL可以在真实驾驶场景中得以部署。
这项工作是开源的,项目链接请参考原文。
Conclusion
本文提出了一种用于多代理自动驾驶运动预测的基线模型。
利用本文所提出的Symmetric Fusion Transformer,模型可以进行高效的全局特征融合,并获得了有关视角变化的鲁棒性。
基于Bernstein多项式基的轨迹参数化方法为下游任务提供了更好的兼容性。
在两项大规模自动驾驶运动预测数据集上的实验结果表明,本文方法可以在参数量更少且推理速度更快的情况下达到与SOTA水准相近的结果。