自然数幂和(拉格朗日插值法)

今天A组的第一题是这个 Σ(☉▽☉”

题目:

ni=1ik
对一个大于k的质数取模。
1<=n<=10^8,1<=k<=10^6

解法:

不懂拉格朗日插值法的戳这儿

我们首先得知道 ni=1ik 是可以变成一个k+1次的多项式的,这个用差分表法都可以知道。

于是可以插值了,插值就插0,1,2…,k,k+1这k+2个点就行了。

直接带入n,可得:
Ans=k+1i=0f(i)k+1j=0(nj)(ij)k+1j=0(ij)(ij)

f(i)就是 ij=1jk

观察式子,发现分式的分子是一个前缀积×后缀积,可以扫两遍预处理。
分式的分母其实是两个阶乘,注意符号,可以变为:
Ans=ki=0f(i)i1j=0(nj)k+1j=i+1(nj)i!(k+1i)!(1)k+1i

f(i)可以线性筛法做到O(n)预处理,分母中的逆元也可以O(n)预处理,分子也可以O(n)。

所以这个做法是O(n)的,当然,常数巨大。

不卡时限的话,log也是很好打的。

这个代码是用1-k+2插值的。

Code:

#include<cstdio>
#define ll long long
#define fo(i, x, y) for(ll i = x; i <= y; i ++)
#define fd(i, x, y) for(ll i = x; i >= y; i --)
using namespace std;

const ll N = 1e6 + 5, mo = 998244353;

ll ksm(ll x, ll y) {
    ll s = 1;
    for(; y; y /= 2, x = x * x % mo)
        if(y & 1) s = s * x % mo;
    return s;
}

ll n, k, a[N], f[N], fac[N], p[N], q[N];

ll solve(ll n, ll k) {
    ll ans = 0;
    p[0] = q[k + 3] = 1;
    fo(i, 1, k + 2) p[i] = p[i - 1] * (n - i) % mo;
    fd(i, k + 2, 1) q[i] = q[i + 1] * (n - i) % mo;
    fo(i, 1, k + 2) ans += ((k - i + 2) % 2 ? (-1) : 1) * f[i] * (p[i - 1] * q[i + 1] % mo) % mo * ksm(fac[i - 1] * fac[k + 2 - i] % mo, mo -2) % mo;
    return (ans % mo + mo) % mo;
}

int main() {
    fac[0] = 1; fo(i, 1, 1e6 + 2) fac[i] = fac[i - 1] * i % mo;
    scanf("%lld %lld", &n, &k);
    f[0] = 0; fo(i, 1, 1e6 + 2) f[i] = (f[i - 1] + ksm(i, k)) % mo;
    printf("%lld\n", solve(n, k));
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值