【ZJOI2015】诸神眷顾的幻想乡(广义后缀自动机)

题目大意:

有一棵有n个节点的树,每个节点上有一个数字。
求所有树的路径中,所形成的字符串中不同的有多少个。
1<=n<=10^5
叶子节点数小于20。

题解:

其实我很不解一个裸的不能再裸的题为什么会是ZJOI Day1 的最后一题(暴%Po姐)。

也许是因为后缀自动机2012年才提出来吧。

首先注意叶子节点数小于20。

这启发我们以它们为根,去建树,这样会有20个trie,再合并,就有一棵大tried。

现在的问题在于求这棵trie的不同子串数(注意子串是自上到下的路径)。

这就是广义后缀自动机的裸题。

那么广义后缀自动机和后缀自动机有什么区别呢?

其实在我的眼里,并没有。

后缀自动机是一个串一直做到底。

对于广义后缀自动机(trie的后缀自动机),我只需要记录下trie上每个点加入它们以后的last,这样每个点加入的时候,从它父亲的记录下来的last开始搞就好了。

方案数就是 step[x]step[pre[x]]

这个是后缀自动机的性质,广义当然同样适用。

答案没开long long导致1A失败。

Code:

#include<cstdio> 
#include<cstring>
#define ll long long
#define fo(i, x, y) for(int i = x; i <= y; i ++)
using namespace std;

const int N = 200005;

int n, C, c[N], x, y, z, r[N], bz[N];

struct edge {
    int fi[N], nt[N], to[N], t;
    void link(int x, int y) {
        nt[++ t] = fi[x], to[t] = y, fi[x] = t;
        nt[++ t] = fi[y], to[t] = x, fi[y] = t;
    }
} e;

struct Trie {
    int son[N * 20][10], t, last[N * 20];
    int is(int x, int c) {
        if(!son[x][c]) son[x][c] = ++ t;
        return son[x][c];
    }

} a;

struct suffix_automation {
    ll ans;
    int tot, lat, son[N * 20][10], pre[N * 20], step[N * 20];
    #define push(u) step[++ tot] = u;
    void extend(int last, int c) {
        push(step[last] + 1);
        int p = last, np = tot;
        for(; p && !son[p][c]; p = pre[p]) son[p][c] = np;
        if(!p) pre[np] = 1; else {
            int q = son[p][c];
            if(step[p] + 1 < step[q]) {
                push(step[p] + 1);
                int nq = tot;
                memcpy(son[nq],son[q],sizeof son[q]);
                pre[nq] = pre[q]; pre[q] = pre[np] = nq;
                for(; son[p][c] == q; p = pre[p]) son[p][c] = nq;
            } else pre[np] = q;
        }
        last = np;
        ans += step[last] - step[pre[last]];
        lat = last;
    }

} suf;

void dg(int x) {
    bz[x] = 1;
    int zz = z;
    for(int i = e.fi[x]; i; i = e.nt[i]) {
        int y = e.to[i]; if(bz[y]) continue;
        z = zz;
        z = a.is(z, c[y]);
        dg(y);
    }
    bz[x] = 0;
}

void dfs(int x, int y, int pc) {
    if(x == 0) {
        a.last[x] = suf.tot = suf.lat = 1;
    } else {
        suf.extend(a.last[y], pc);
        a.last[x] = suf.lat;
    }
    fo(i, 0, C - 1) if(a.son[x][i]) {
        int y = a.son[x][i];
        dfs(y, x, i);
    }
}

int main() {
    scanf("%d %d", &n, &C);
    fo(i, 1, n) scanf("%d", &c[i]);
    fo(i, 1, n - 1) {
        scanf("%d %d", &x, &y);
        e.link(x, y); r[x] ++; r[y] ++;
    }
    fo(i, 1, n) if(r[i] == 1) {
        z = a.is(0, c[i]);
        dg(i);
    }
    dfs(0, 0, 0);
    printf("%lld", suf.ans);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值