题目大意:
有一棵有n个节点的树,每个节点上有一个数字。
求所有树的路径中,所形成的字符串中不同的有多少个。
1<=n<=10^5
叶子节点数小于20。
题解:
其实我很不解一个裸的不能再裸的题为什么会是ZJOI Day1 的最后一题(暴%Po姐)。
也许是因为后缀自动机2012年才提出来吧。
首先注意叶子节点数小于20。
这启发我们以它们为根,去建树,这样会有20个trie,再合并,就有一棵大tried。
现在的问题在于求这棵trie的不同子串数(注意子串是自上到下的路径)。
这就是广义后缀自动机的裸题。
那么广义后缀自动机和后缀自动机有什么区别呢?
其实在我的眼里,并没有。
后缀自动机是一个串一直做到底。
对于广义后缀自动机(trie的后缀自动机),我只需要记录下trie上每个点加入它们以后的last,这样每个点加入的时候,从它父亲的记录下来的last开始搞就好了。
方案数就是 ∑step[x]−step[pre[x]] 。
这个是后缀自动机的性质,广义当然同样适用。
答案没开long long导致1A失败。
Code:
#include<cstdio>
#include<cstring>
#define ll long long
#define fo(i, x, y) for(int i = x; i <= y; i ++)
using namespace std;
const int N = 200005;
int n, C, c[N], x, y, z, r[N], bz[N];
struct edge {
int fi[N], nt[N], to[N], t;
void link(int x, int y) {
nt[++ t] = fi[x], to[t] = y, fi[x] = t;
nt[++ t] = fi[y], to[t] = x, fi[y] = t;
}
} e;
struct Trie {
int son[N * 20][10], t, last[N * 20];
int is(int x, int c) {
if(!son[x][c]) son[x][c] = ++ t;
return son[x][c];
}
} a;
struct suffix_automation {
ll ans;
int tot, lat, son[N * 20][10], pre[N * 20], step[N * 20];
#define push(u) step[++ tot] = u;
void extend(int last, int c) {
push(step[last] + 1);
int p = last, np = tot;
for(; p && !son[p][c]; p = pre[p]) son[p][c] = np;
if(!p) pre[np] = 1; else {
int q = son[p][c];
if(step[p] + 1 < step[q]) {
push(step[p] + 1);
int nq = tot;
memcpy(son[nq],son[q],sizeof son[q]);
pre[nq] = pre[q]; pre[q] = pre[np] = nq;
for(; son[p][c] == q; p = pre[p]) son[p][c] = nq;
} else pre[np] = q;
}
last = np;
ans += step[last] - step[pre[last]];
lat = last;
}
} suf;
void dg(int x) {
bz[x] = 1;
int zz = z;
for(int i = e.fi[x]; i; i = e.nt[i]) {
int y = e.to[i]; if(bz[y]) continue;
z = zz;
z = a.is(z, c[y]);
dg(y);
}
bz[x] = 0;
}
void dfs(int x, int y, int pc) {
if(x == 0) {
a.last[x] = suf.tot = suf.lat = 1;
} else {
suf.extend(a.last[y], pc);
a.last[x] = suf.lat;
}
fo(i, 0, C - 1) if(a.son[x][i]) {
int y = a.son[x][i];
dfs(y, x, i);
}
}
int main() {
scanf("%d %d", &n, &C);
fo(i, 1, n) scanf("%d", &c[i]);
fo(i, 1, n - 1) {
scanf("%d %d", &x, &y);
e.link(x, y); r[x] ++; r[y] ++;
}
fo(i, 1, n) if(r[i] == 1) {
z = a.is(0, c[i]);
dg(i);
}
dfs(0, 0, 0);
printf("%lld", suf.ans);
}