【NOI2015模拟YYT】传送

Description:

你在一个有n 个点的环上,环上点按逆时针顺序标号为0 到n - 1。你一
开始在0 号点。你在每一回合可以使用k 种传送中的一种,第i 种传送会将你
按逆时针方向移动ai 个点。有m 个限制条件,对于每个限制条件(xi; yi),要
求不能在第xi 步之后在yi 号点上。你要求出经过l 步之后在0 号点的方案数
模998244353。

题解:

直接NTT?

O(mnlog2n) 成功拿到60分。

考虑优化一下.

现在把转移数组看作c.

要求 ck

正常做法:快速幂NTT

一次复杂度: O(nlog2n)

在这道题中,n是二的整次幂,所以模n刚好回到原位,其实有:
DFT(cc)=DFT(c)DFT(c)

因此可以先对c进行DFT点值运算,搞个k次幂,再插值回来。

这为什么是对的?

还记得为什么FFT要开两倍。

因为它实际上是一个循环卷积。

c=ab
c(i+j) mod n=n1i=0n1j=0a[i]b[j]

随便你用点积自我乘个无数遍,它都会刚好溢出,溢出就是mo个次数界,这里的次数界=n*2,刚好符合我们的需求。

因此复杂度降为 O(mnlogn)

Code:

#include<cstdio>
#include<algorithm>
#define ll long long
#define fo(i, x, y) for(int i = x; i <= y; i ++)
#define ff(i, x, y) for(int i = x; i < y; i ++)
using namespace std;

const int N = 2e5 + 5;

const ll mo = 998244353;

int n, l, m, k, x;

ll s[N], b[N], c[N];

struct node {
    int x, y;
} a[N];

ll w[N], tx;

ll ksm(ll x, ll y) {
    ll s = 1;
    for(; y; y /= 2, x = x * x % mo)
        if(y & 1) s = s * x % mo;
    return s;
}
void dft(ll *a, int n) {
    ff(i, 0, n) {
        int p = i, q = 0;
        fo(j, 1, tx) q = q * 2 + p % 2, p /= 2;
        if(q > i) swap(a[q], a[i]);
    }
    for(int m = 2; m <= n; m *= 2) {
        int h = m / 2;
        ff(i, 0, h) {
            ll W = w[i * (n / m)];
            for(int j = i; j < n; j += m) {
                int k = j + h;
                ll u = a[j], v = a[k] * W % mo;
                a[j] = (u + v) % mo; a[k] = (u - v + mo) % mo;
            }
        }
    }
}
ll ni;
void fft(ll *a, ll *b, int n) {
    dft(a, n); dft(b, n); ff(i, 0, n) a[i] = a[i] * b[i] % mo;
    fo(i, 0, n / 2) swap(w[i], w[n - i]);
    dft(a, n); ff(i, 0, n) a[i] = a[i] * ni % mo;
    fo(i, 0, n / 2) swap(w[i], w[n - i]);
}

int cmp(node a, node b) {
    return a.x < b.x;
}

int main() {
    scanf("%d %d", &n, &l);
    scanf("%d", &m);
    fo(i, 1, m) scanf("%d %d", &a[i].x, &a[i].y);
    scanf("%d", &k);
    fo(i, 1, k) {
        scanf("%d", &x);
        b[x] ++;
    }
    while(1 << tx ++ < n) tx ++;

    sort(a + 1, a + m + 1, cmp);
    s[0] = 1; a[0].x = 0; a[m + 1].x = l;

    int n0 = n;
    n = 1 << tx; ll v = ksm(3, (mo - 1) / n);
    w[0] = 1; fo(i, 1, n) w[i] = w[i - 1] * v % mo;

    dft(b, n);
    ni = ksm(n, mo - 2);

    fo(i, 1, m + 1) if(i == 1 || a[i].x != a[i - 1].x) {
        ff(j, 0, n) c[j] = ksm(b[j], a[i].x - a[i - 1].x);
        dft(s, n);
        ff(j, 0, n) s[j] = s[j] * c[j] % mo;
        fo(j, 0, n / 2) swap(w[j], w[n - j]);
        dft(s, n);
        ff(j, 0, n) s[j] = s[j] * ni % mo;
        fo(j, 0, n / 2) swap(w[j], w[n - j]);
        ff(j, n0, n) s[j % n0] = (s[j % n0] + s[j]) % mo, s[j] = 0;
        int l = i;
        while(l <= m && a[l].x == a[i].x) {
            s[a[l].y] = 0;
            l ++;
        }
    }
    printf("%lld", s[0]);
}
  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值