【NOI 2015】程序自动分析

博客内容介绍了如何解决一个简化版的约束满足问题,通过并查集与离散化技术来判断一组变量约束条件是否可以同时满足。文章提供样例数据及分析,并给出了解决代码。
摘要由CSDN通过智能技术生成

【题目】

传送门

题目描述:

在实现程序自动分析的过程中,常常需要判定一些约束条件是否能被同时满足。

考虑一个约束满足问题的简化版本:假设 x 1 , x 2 , x 3 , … , x n x_1,x_2,x_3,\dots,x_n x1,x2,x3,,xn 代表程序中出现的变量,给定 n n n 个形如 x i = x j x_i=x_j xi=xj x i ≠ x j x_i≠x_j xi̸=xj 的变量相等 / / /不等的约束条件,请判定是否可以分别为每一个变量赋予恰当的值,使得上述所有约束条件同时被满足。

例如,一个问题中的约束条件为: x 1 = x 2 , x 2 = x 3 , x 3 = x 4 , x 1 ≠ x 4 x_1=x_2,x_2=x_3,x_3=x_4,x_1≠x_4 x1=x2,x2=x3,x3=x4,x1̸=x4,这些约束条件显然是不可能同时被满足的,因此这个问题应判定为不可被满足。

现在给出一些约束满足问题,请分别对它们进行判定。

输入格式:

1 1 1 行包含

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值