【gdoi2018 day2】巡逻

题目大意:

每次可以封掉一个点或者开启一个点。

动态的询问经过一个点x的最小环。

题解:

这题算什么好呢,其实一点都不难,也不知道为什么没想出来。

求出x到每个点的最短路和次短路。

注意这里的最短路和次短路不是真正意义上的最短路和次短路,只是x到它们路径经过的第一个点不同。

这样的取每个点最短路+次短路的min值就行了。

为什么这是对的呢?

不会出现第一个点不同,但是后面有并集的情况吗?

当然会,但是你会发现在它们并集的第一个点的答案一定会比这个优,所以这个是对的。

完全图这种东西用dij求快。

Code:

#pragma GCC optimize(2)
#include<cstdio>
#include<algorithm>
#define fo(i, x, y) for(int i = x; i <= y; i ++)
#define fi first
#define se second
#define mp make_pair<int, int>
using namespace std;

typedef pair<int, int> P;

const int N = 405;

int n, q, tp, x, use[N], a[N][N], d[N], bz[N], ans;
P f[N][2];

void dij(int x) {
    fo(i, 0, n) f[i][0] = f[i][1] = mp(1e9, 0);
    fo(i, 1, n) bz[i] = 0;
    d[d[0] = 1] = x;
    f[x][0] = f[x][1] = mp(0, x);
    fo(ii, 1, n) {
        int p = 0;
        fo(i, 1, n) if(!bz[i] && (p == 0 || f[i][0].fi < f[p][0].fi))
            p = i;
        if(!p) break;
        bz[p] = 1;
        fo(j, 1, n) if(use[j] && a[p][j] > 0) {
            fo(k, 0, 1) {
                P t = mp(f[p][k].fi + a[p][j], f[p][k].se);
                if(p == x) t.se = j;
                if(t.fi < f[j][0].fi) {
                    if(t.se != f[j][0].se) f[j][1] = f[j][0];
                    f[j][0] = t;
                } else {
                    if(t.fi < f[j][1].fi && t.se != f[j][0].se)
                        f[j][1] = t;
                }
            }
        }
    }
    ans = 2e9;
    fo(i, 1, n) if(i != x)
        ans = min(ans, f[i][0].fi + f[i][1].fi);
}

int main() {
    freopen("patrol.in", "r", stdin);
    freopen("patrol.out", "w", stdout);
    scanf("%d", &n);
    fo(i, 1, n) use[i] = 1;
    fo(i, 1, n) fo(j, 1, n) scanf("%d", &a[i][j]);
    scanf("%d", &q);
    fo(ii, 1, q) {
        scanf("%d %d", &tp, &x);
        if(tp == 1) {
            use[x] = !use[x];
        } else {
            dij(x);
            printf("%d\n", ans < 1e9 ? ans : -1);
        }
    }
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值