题目大意:
每次可以封掉一个点或者开启一个点。
动态的询问经过一个点x的最小环。
题解:
这题算什么好呢,其实一点都不难,也不知道为什么没想出来。
求出x到每个点的最短路和次短路。
注意这里的最短路和次短路不是真正意义上的最短路和次短路,只是x到它们路径经过的第一个点不同。
这样的取每个点最短路+次短路的min值就行了。
为什么这是对的呢?
不会出现第一个点不同,但是后面有并集的情况吗?
当然会,但是你会发现在它们并集的第一个点的答案一定会比这个优,所以这个是对的。
完全图这种东西用dij求快。
Code:
#pragma GCC optimize(2)
#include<cstdio>
#include<algorithm>
#define fo(i, x, y) for(int i = x; i <= y; i ++)
#define fi first
#define se second
#define mp make_pair<int, int>
using namespace std;
typedef pair<int, int> P;
const int N = 405;
int n, q, tp, x, use[N], a[N][N], d[N], bz[N], ans;
P f[N][2];
void dij(int x) {
fo(i, 0, n) f[i][0] = f[i][1] = mp(1e9, 0);
fo(i, 1, n) bz[i] = 0;
d[d[0] = 1] = x;
f[x][0] = f[x][1] = mp(0, x);
fo(ii, 1, n) {
int p = 0;
fo(i, 1, n) if(!bz[i] && (p == 0 || f[i][0].fi < f[p][0].fi))
p = i;
if(!p) break;
bz[p] = 1;
fo(j, 1, n) if(use[j] && a[p][j] > 0) {
fo(k, 0, 1) {
P t = mp(f[p][k].fi + a[p][j], f[p][k].se);
if(p == x) t.se = j;
if(t.fi < f[j][0].fi) {
if(t.se != f[j][0].se) f[j][1] = f[j][0];
f[j][0] = t;
} else {
if(t.fi < f[j][1].fi && t.se != f[j][0].se)
f[j][1] = t;
}
}
}
}
ans = 2e9;
fo(i, 1, n) if(i != x)
ans = min(ans, f[i][0].fi + f[i][1].fi);
}
int main() {
freopen("patrol.in", "r", stdin);
freopen("patrol.out", "w", stdout);
scanf("%d", &n);
fo(i, 1, n) use[i] = 1;
fo(i, 1, n) fo(j, 1, n) scanf("%d", &a[i][j]);
scanf("%d", &q);
fo(ii, 1, q) {
scanf("%d %d", &tp, &x);
if(tp == 1) {
use[x] = !use[x];
} else {
dij(x);
printf("%d\n", ans < 1e9 ? ans : -1);
}
}
}