先写出DP方程
f(i,j)
表示放了
i
个数,乘积模
那么
这个可以用矩阵+快速幂优化 但是不够优
发现模数比较特别,如果可以把乘号变成加号,就可以用NTT+快速幂来做
用
m
的原根
#include <cstdio>
#include <iostream>
#include <algorithm>
using namespace std;
const int N=8010<<3,P=1004535809,G=3;
inline char nc(){
static char buf[100000],*p1=buf,*p2=buf;
return p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++;
}
inline void rea(int &x){
char c=nc(); x=0;
for(;c>'9'||c<'0';c=nc());for(;c>='0'&&c<='9';x=x*10+c-'0',c=nc());
}
int n,m,x,s,g;
int a[N],numb[N];
inline bool prim(int x){
static int vis[N];
for(int i=0;i<m;i++) vis[i]=0;
for(int i=1,prod=x;i<m;i++,prod=1LL*prod*x%m)
if(vis[prod]) return false;
else vis[prod]=1;
return g=x;
}
int _x[N],rev[N],w[2][N];
int num,L,M;
inline int Pow(int x,int y){
int ret=1;
for(;y;y>>=1,x=1LL*x*x%P)
if(y&1) ret=1LL*ret*x%P;
return ret;
}
inline void Pre(int n){
num=n;
int g=Pow(G,(P-1)/num),invg=Pow(g,P-2);
w[0][0]=w[1][0]=1;
for(int i=1;i<num;i++)
w[0][i]=1LL*w[0][i-1]*invg%P,w[1][i]=1LL*w[1][i-1]*g%P;
}
inline void NTT(int *a,int n,int r){
for(int i=1;i<n;i++) if(rev[i]>i) swap(a[rev[i]],a[i]);
for(int i=1;i<n;i<<=1)
for(int j=0;j<n;j+=(i<<1))
for(int k=0;k<i;k++){
int x=a[j+k],y=1LL*a[j+k+i]*w[r][num/(i<<1)*k]%P;
a[j+k]=(x+y)%P; a[j+k+i]=(x+P-y)%P;
}
if(!r) for(int i=0,inv=Pow(n,P-2);i<n;i++) a[i]=1LL*a[i]*inv%P;
}
inline void mul(int *a,int *b){
static int tmp[N];
for(int i=0;i<m-1;i++) tmp[i]=b[i];
NTT(a,M<<1,1); NTT(tmp,M<<1,1);
for(int i=0;i<(M<<1);i++) a[i]=1LL*a[i]*tmp[i]%P;
NTT(a,M<<1,0);
for(int i=0;i<m-1;i++) (a[i]+=a[i+m-1])%=P;
for(int i=m-1;i<(M<<1);i++) a[i]=tmp[i]=0;
}
inline int *Pow(int *x,int y){
int *ret=_x; ret[0]=1;
for(;y;y>>=1,mul(x,x))
if(y&1) mul(ret,x);
return ret;
}
int main(){
rea(n); rea(m); rea(x); rea(s);
M=1; for(;M<=(m<<1);M<<=1); Pre(M<<1);
L=0; while(!(M>>L&1)) L++;
for(int i=1;i<(M<<1);i++) rev[i]=(rev[i>>1]>>1)|((i&1)<<L);
for(int i=2;i<m;i++)
if(prim(i)) break;
for(int i=1,prod=g;i<m-1;i++,prod=1LL*prod*g%m) numb[prod]=i;
for(int i=1;i<=s;i++){
int x; rea(x);
if(!x) continue;
a[numb[x%m]]++;
}
printf("%d\n",Pow(a,n)[numb[x]]);
return 0;
}