用f[i][j]表示第i个节点,最大的为j且满足条件的大根堆的大小
现场写了一个很鬼畜的线段树合并DP数组……一直RE加上时间不够就弃疗了
不过好像是有类似的做法,先挖个坑……
题解很妙啊,考虑链上的情况就是求LIS,求LIS可以用f[i]表示长度为i的子序列的最大是多少然后二分维护,那么放到树上同样可以做,用set维护。子树之间互不影响,直接启发式合并,父节点在子树合并得到的set中找到第一个大于等于它的元素删掉,然后把自己插进去,最后根节点set的大小就是答案
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <set>
using namespace std;
const int N=200010;
int n,cnt,x;
int G[N],a[N];
struct edge{
int t,nx;
}E[N<<1];
multiset<int> f[N];
inline char nc(){
static char buf[100000],*p1=buf,*p2=buf;
return p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++;
}
inline void rea(int &x){
char c=nc(); x=0;
for(;c>'9'||c<'0';c=nc());for(;c>='0'&&c<='9';x=x*10+c-'0',c=nc());
}
inline void add(int x,int y){
E[++cnt].t=y; E[cnt].nx=G[x]; G[x]=cnt;
E[++cnt].t=x; E[cnt].nx=G[y]; G[y]=cnt;
}
#define V E[i].t
void dfs(int x,int p){
for(int i=G[x];i;i=E[i].nx)
if(V!=p){
dfs(V,x);
if(f[V].size()>f[x].size()) swap(f[x],f[V]);
for(set<int>::iterator j=f[V].begin();j!=f[V].end();j++)
f[x].insert(*j);
f[V].clear();
}
if(f[x].size()>0&&f[x].lower_bound(a[x])!=f[x].end()) f[x].erase(f[x].lower_bound(a[x]));
f[x].insert(a[x]);
}
int main(){
rea(n); rea(a[1]); rea(x);
for(int i=2;i<=n;i++)
rea(a[i]),rea(x),add(x,i);
dfs(1,0);
printf("%d\n",(int)f[1].size());
return 0;
}