[数论] Codeforces 516E. Drazil and His Happy Friends

一个点 i T 时刻变成特殊点,那么点 (i+N)%M 会在 T+N 时刻变成特殊点 (N和M可以互换)
这样也是分成了 gcd(N,M) 个环,可以证明,每个点与它在环中的下一个点之间的点都是由它覆盖的。
每个环单独处理就可以了。

#include <cstdio>
#include <iostream>
#include <algorithm>
#include <map>
#include <vector>
#define fi first
#define se second

using namespace std;

typedef pair<int,int> ii;
typedef long long ll;

const int N=200010;

int n,m,g,ta,tb,a[N],b[N],vis[N];
ll ans,val[N];
map<int,vector<int> > M;
map<ll,int> S,T;

int gcd(int x,int y){
  return y?gcd(y,x%y):x;
}

ii exgcd(int x,int y){
  if(y==0) return {1,0};
  ii ret=exgcd(y,x%y);
  return {ret.se,ret.fi-x/y*ret.se};
}

inline void work(int *a,int *b,int ta,int tb,int n,int m){
  M.clear(); S.clear(); T.clear();
  for(int i=0;i<g;i++) vis[i]=0;
  if(ta==n) return ;
  int len=n/g;
  for(int i=1;i<=tb;i++){
    vis[b[i]%g]=1;
    if(!S.count(b[i]%n))
      M[b[i]%g].push_back(b[i]%n),S[b[i]%n]=b[i];
    else S[b[i]%n]=min(S[b[i]%n],b[i]);
  }
  for(int i=1;i<=ta;i++){
    T[a[i]]=1; vis[a[i]%g]=1;
    if(!S.count(a[i]))
       M[a[i]%g].push_back(a[i]),S[a[i]]=a[i];
    else S[a[i]]=min(S[a[i]],a[i]);
  }

  for(int i=0;i<g;i++){
    if(!vis[i]){ puts("-1"); exit(0); }
    vector<int> v=M[i];
    vector<ii> A;
    int stp=-exgcd(m,n).fi;
    for(int j : v)
      A.push_back({(1LL*(i-j)/g*stp%len+len)%len,S[j]});
    sort(A.begin(),A.end());
    if(A.size()==1){
      if(len==1 && T.count(i+1LL*A[0].fi*stp)) continue;
      ans=max(ans,1LL*(len-1)*m+A[0].se);
      continue;
    }
    //printf("%d\n",i); for(int j : V) printf("%d ",j); putchar('\n');
    for(int j=0;j<A.size();j++){
      int cur=j,nxt=(j+1)%A.size();
      if((A[cur].fi+1)%len==A[nxt].fi && T.count(i+1LL*A[cur].fi*stp));
      else ans=max(ans,1LL*(A[nxt].fi+len-A[cur].fi-1)%len*m+A[cur].se);
    }
  }
}

int main(){
  scanf("%d%d",&n,&m); g=gcd(n,m);
  scanf("%d",&ta); for(int i=1;i<=ta;i++) scanf("%d",&a[i]);
  scanf("%d",&tb); for(int i=1;i<=tb;i++) scanf("%d",&b[i]);
  if(g>ta+tb) return puts("-1"),0;
  work(a,b,ta,tb,n,m); work(b,a,tb,ta,m,n);
  printf("%lld\n",ans);
  return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值