一个点
i
在
这样也是分成了
gcd(N,M)
个环,可以证明,每个点与它在环中的下一个点之间的点都是由它覆盖的。
每个环单独处理就可以了。
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <map>
#include <vector>
#define fi first
#define se second
using namespace std;
typedef pair<int,int> ii;
typedef long long ll;
const int N=200010;
int n,m,g,ta,tb,a[N],b[N],vis[N];
ll ans,val[N];
map<int,vector<int> > M;
map<ll,int> S,T;
int gcd(int x,int y){
return y?gcd(y,x%y):x;
}
ii exgcd(int x,int y){
if(y==0) return {1,0};
ii ret=exgcd(y,x%y);
return {ret.se,ret.fi-x/y*ret.se};
}
inline void work(int *a,int *b,int ta,int tb,int n,int m){
M.clear(); S.clear(); T.clear();
for(int i=0;i<g;i++) vis[i]=0;
if(ta==n) return ;
int len=n/g;
for(int i=1;i<=tb;i++){
vis[b[i]%g]=1;
if(!S.count(b[i]%n))
M[b[i]%g].push_back(b[i]%n),S[b[i]%n]=b[i];
else S[b[i]%n]=min(S[b[i]%n],b[i]);
}
for(int i=1;i<=ta;i++){
T[a[i]]=1; vis[a[i]%g]=1;
if(!S.count(a[i]))
M[a[i]%g].push_back(a[i]),S[a[i]]=a[i];
else S[a[i]]=min(S[a[i]],a[i]);
}
for(int i=0;i<g;i++){
if(!vis[i]){ puts("-1"); exit(0); }
vector<int> v=M[i];
vector<ii> A;
int stp=-exgcd(m,n).fi;
for(int j : v)
A.push_back({(1LL*(i-j)/g*stp%len+len)%len,S[j]});
sort(A.begin(),A.end());
if(A.size()==1){
if(len==1 && T.count(i+1LL*A[0].fi*stp)) continue;
ans=max(ans,1LL*(len-1)*m+A[0].se);
continue;
}
//printf("%d\n",i); for(int j : V) printf("%d ",j); putchar('\n');
for(int j=0;j<A.size();j++){
int cur=j,nxt=(j+1)%A.size();
if((A[cur].fi+1)%len==A[nxt].fi && T.count(i+1LL*A[cur].fi*stp));
else ans=max(ans,1LL*(A[nxt].fi+len-A[cur].fi-1)%len*m+A[cur].se);
}
}
}
int main(){
scanf("%d%d",&n,&m); g=gcd(n,m);
scanf("%d",&ta); for(int i=1;i<=ta;i++) scanf("%d",&a[i]);
scanf("%d",&tb); for(int i=1;i<=tb;i++) scanf("%d",&b[i]);
if(g>ta+tb) return puts("-1"),0;
work(a,b,ta,tb,n,m); work(b,a,tb,ta,m,n);
printf("%lld\n",ans);
return 0;
}