[网络流] BZOJ3894 文理分科

本文介绍了一种基于网络流算法的经典模型应用案例,通过将问题抽象为节点和边的关系,利用增广路径求解最大流问题,进而解决特定场景下的资源分配优化问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

经典模型我都不会

每个点拆成三个点,分别表示“选文理”“周围的人都选文科”“周围的人都选理科”

然后根据关系连边

#include <cstdio>
#include <iostream>
#include <algorithm>
#include <queue>

using namespace std;

const int N=100010,inf=1e9;

int n,m,S,T,cnt=1,G[N];
int g[110][110],a[110][110],b[110][110],c[110][110],d[110][110];
struct edge{
  int t,nx,f;
}E[N*10];

inline void addedge(int x,int y,int f){
  E[++cnt].t=y; E[cnt].nx=G[x]; E[cnt].f=f; G[x]=cnt;
  E[++cnt].t=x; E[cnt].nx=G[y]; E[cnt].f=0; G[y]=cnt;
}

int dis[N],cur[N];
queue<int> Q;

inline bool bfs(){
  while(!Q.empty()) Q.pop();
  for(int i=0;i<=T;i++) dis[i]=-1;
  Q.push(S); dis[S]=0;
  while(!Q.empty()){
    int x=Q.front(); Q.pop();
    for(int i=G[x];i;i=E[i].nx)
      if(E[i].f && !~dis[E[i].t]){
    dis[E[i].t]=dis[x]+1;
    if(E[i].t==T) return true;
    Q.push(E[i].t);
      }
  }
  return false;
}

int dfs(int x,int f){
  if(x==T || !f) return f;
  int used=0,w;
  for(int &i=cur[x];i;i=E[i].nx)
    if(E[i].f && dis[E[i].t]==dis[x]+1){
      w=dfs(E[i].t,min(f-used,E[i].f));
      E[i].f-=w; E[i^1].f+=w;
      if((used+=w)==f) return used;
    }
  if(!used) dis[x]=-1;
  return used;
}

int main(){
  freopen("1.in","r",stdin);
  freopen("1.out","w",stdout);
  scanf("%d%d",&n,&m);
  int ans=0;
  for(int i=1;i<=n;i++)
    for(int j=1;j<=m;j++)
      g[i][j]=T++,scanf("%d",&a[i][j]),ans+=a[i][j];
  for(int i=1;i<=n;i++)
    for(int j=1;j<=m;j++)
      scanf("%d",&b[i][j]),ans+=b[i][j];
  for(int i=1;i<=n;i++)
    for(int j=1;j<=m;j++)
      scanf("%d",&c[i][j]),ans+=c[i][j];
  for(int i=1;i<=n;i++)
    for(int j=1;j<=m;j++)
      scanf("%d",&d[i][j]),ans+=d[i][j];
  S=T*3+1; T=S+1;
  for(int i=1;i<=n;i++)
    for(int j=1;j<=m;j++){
      addedge(S,g[i][j]*3,a[i][j]);
      addedge(g[i][j]*3,T,b[i][j]);
      addedge(g[i][j]*3+1,g[i][j]*3,inf);
      addedge(g[i][j]*3,g[i][j]*3+2,inf);
      addedge(S,g[i][j]*3+1,c[i][j]);
      addedge(g[i][j]*3+2,T,d[i][j]);
      for(int xx=-1;xx<=1;xx++)
    for(int yy=-1;yy<=1;yy++)
      if((!!xx)^(!!yy)){
        int x=i+xx,y=j+yy;
        if(x<1 || x>n || y<1 || y>m) continue;
        addedge(g[i][j]*3+1,g[x][y]*3,inf);
        addedge(g[x][y]*3,g[i][j]*3+2,inf);
      }
    }
  while(bfs()){
    for(int i=0;i<=T;i++) cur[i]=G[i];
    ans-=dfs(S,inf); 
  }
  printf("%d\n",ans);
  return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值