一类选和不选,以及一些并加条件的网络流建模问题。
最小割和最大流在值上是相等的。
此类问题常为两种选择,不同的选择会有不同的收益,同时某些组合特定的选择方式会有额外的收获。
-
bzoj3438小M的作物
小M在MC里开辟了两块巨大的耕地 A A A和 B B B(你可以认为容量是无穷),现在,小P有 n n n中作物的种子,每种作物的种子有 1 1 1个(就是可以种一棵作物)(用 1... n 1...n 1...n编号),现在,第 i i i种作物种植在 A A A中种植可以获得 a i a_i ai的收益,在 B B B中种植可以获得 b i b_i bi的收益,而且,现在还有这么一种神奇的现象,就是某些作物共同种在一块耕地中可以获得额外的收益,小M找到了规则中共有 m m m种作物组合,第 i i i个组合中的作物共同种在A中可以获得 c 1 i c1_i c1i的额外收益,共同总在 B B B中可以获得 c 2 i c2_i c2i的额外收益,所以,小M很快的算出了种植的最大收益,但是他想要考考你,你能回答他这个问题么?我们将A点作为源点 S S S,B点作为汇点 T T T。
源点连向每个点,边权为 a i a_i ai,每个点连向汇点,边权为 b i b_i bi。
对于每个附加条件,增加两个点 K K K, L L L。
S->K连一条边权为 c 1 i c1_i c1i的边,再将K到组合中的每个点连一条边权为INF的边。
L->T连一条边权为 c 2 i c2_i c2i的边,再将组合中的每个点到L连一条边权为INF的边。
将所有不为INF连的边加个总和sum,跑一遍最小割ans,答案就是sum-ans
代码
#include<bits/stdc++.h>
#define inf 2000000000LL
using namespace std;
const int N=5020,M=5e6+50;
int S,T,n,m,a[N],b[N],d[N],cnt,sum;
int head[N],to[M],nxt[M],w[M],tot=1;
queue<int>Q;
inline int rd()
{
char ch=getchar();int x=0,f=1;
while(!isdigit(ch)){
if(ch=='-') f=-1;ch=getchar();}
while(isdigit(ch)){
x=x*10+(ch^48);ch=getchar();}
return x*f;
}
inline void lk(int u,int v,int c)
{
to[++tot]=v;nxt[tot]=head[u];head[u]=tot;w[tot]=c;
to[++tot]=u;nxt[tot]=head[v];head[v]=tot;w[tot]=0;
}
inline bool bfs()
{
int i,j,x;
for(i=1;i<=cnt;++i) d[i]=0;
d[S]=1;Q.push(S);
while(!Q.empty()){
x=Q.front();Q.pop();
for(i=head[x];i;i=nxt[i]){
j=to[i];if(d[j]||w[i]<=0) continue;
d[j]=d[x]+1;Q.push(j);
}
}
return (d[T]!=0);
}
inline int dfs(int x,int f)
{
if(x==T) return f;
int ss=0,res,i,j;
for(i=head[x];i;i=nxt[i]){
j=to[i];if(w[i]<=0||d[j]!=d[x]+1) continue;
res=dfs(j,min(f-ss,w[i]));
if(!res) continue;
w[i]-=res;w[i^1]+=res;ss+=res;
if(ss==f) return f;
}
if(!ss) d[x]=0;
return ss;
}
int main(){
int i,j,k,ix,iy,iz;
n=rd();cnt=n+2;S=n+1;T=n+2;
for(i=1;i<=n;++i){
a[i]=rd();sum+=a[i];lk(S,i,a