Given two positive integers G and L, could you tell me how many solutions of (x, y, z) there are, satisfying that gcd(x, y, z) = G and lcm(x, y, z) = L?
Note, gcd(x, y, z) means the greatest common divisor of x, y and z, while lcm(x, y, z) means the least common multiple of x, y and z.
Note 2, (1, 2, 3) and (1, 3, 2) are two different solutions.
Input
First line comes an integer T (T <= 12), telling the number of test cases.
The next T lines, each contains two positive 32-bit signed integers, G and L.
It’s guaranteed that each answer will fit in a 32-bit signed integer.
Output
For each test case, print one line with the number of solutions satisfying the conditions above.
Sample Input
2
6 72
7 33
Sample Output
72
0
这个记得黑书上有唯一分解定理形式的对gcd和lcm的解释,然后就想起来了,我能做出来的题,一般都是简单题…
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<set>
#include<vector>
#define N 200005
#define mod 1000000007
using namespace std;
bool p[N];
vector<int> prime;
void init()
{
for(int i=2;i<N;i++)
if(!p[i])
{
prime.push_back(i);
for(int j=i+i;j<N;j+=i)
p[j]=true;
}
}
int fac[500];
int e[500];
int cnt;
void getFac(long long x)
{
cnt=0;
for(int i=0;(long long)prime[i]*prime[i]<=x;i++)
{
if(x%prime[i]==0)
{
fac[cnt]=prime[i];
e[cnt]=0;
while(x%prime[i]==0)
{
x/=prime[i];
e[cnt]++;
}
cnt++;
}
}
if(x>1)
{
fac[cnt]=x;
e[cnt]=1;
cnt++;
}
}
int main()
{
int t;
init();
scanf("%d",&t);
long long G,L;
while(t--)
{
scanf("%lld%lld",&G,&L);
if(L%G)
printf("0\n");
else
{
L/=G;
getFac(L);
long long ans=1;
for(int i=0;i<cnt;i++)
ans*=6*e[i];
printf("%lld\n",ans);
}
}
return 0;
}