HDU - 4497 GCD and LCM (质数分解+组合数学)

10人阅读 评论(0) 收藏 举报
分类:

GCD and LCM

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)
Total Submission(s): 3002    Accepted Submission(s): 1315


Problem Description
Given two positive integers G and L, could you tell me how many solutions of (x, y, z) there are, satisfying that gcd(x, y, z) = G and lcm(x, y, z) = L? 
Note, gcd(x, y, z) means the greatest common divisor of x, y and z, while lcm(x, y, z) means the least common multiple of x, y and z. 
Note 2, (1, 2, 3) and (1, 3, 2) are two different solutions.
 

Input
First line comes an integer T (T <= 12), telling the number of test cases. 
The next T lines, each contains two positive 32-bit signed integers, G and L. 
It’s guaranteed that each answer will fit in a 32-bit signed integer.
 

Output
For each test case, print one line with the number of solutions satisfying the conditions above.
 

Sample Input
2 6 72 7 33
 

Sample Output
72 0
 

Source

题目分析:

已知:gcd(x,y,z) = g; lcm(x,y,z) = l 。因为l = x * y* z /g  所以当 l % g == 1 时,无解。

将满足条件的一组x,y,z都 除以g,得到x',y',z'。满足条件 gcd(x',y',z') = 1,同时 lcm(x',y',z')= g/l;

我们对 l/g 进行素数分解  l/g =  p1^t1+p2^t2+······+p^n+tn;

同时:

x' = p1^i1+p2^i2+······+pn^in;

y' = p1^j1+p2^j2+······+pn^jn;

z' = p1^k1+p2^k2+······+pn^kn;

则一定有: 

对于p1 ==  max(i1,j1,k1); 0 == min(i1,j1,k1) 我们假设, i1 == 0, j1 == t1, 则   k1>=0&&k1<=t1;则,当k1 == 0  或k1==t1时, i1 j1 k1 有三种组合情况  ( 0 0 ti )(0 t1 0) (t1 0 0)/(t1 t1 0) (t1 0 t1) (0 t1 t1)

对于其他的k1 ,i1 j1 k1 的组合情况有6种,所以最后产生了 6*(t1-1)+3*2 = 6*t1 种情况。

所以对每一个分解出来的质数,我们累乘 6 *ti 便是最后的组合情况



#include<bits/stdc++.h>
#define LL long long
using namespace std;

const int MAX = 1e7+10;
const int INF = 0x3fffffff;
int g,l;
int a[MAX];
int p[1000000+10];
int num = 0;

void init(){//素数打表
    memset(a,0,sizeof(a));
    memset(p,0,sizeof(p));
    for(int i=2;i<=MAX;i++){
        if(!a[i]){
            p[num++] = i;
            for(int j=2;i*j<=MAX;j++){
                a[i*j] = 1;
            }
        }
    }
}

int main(){
    init();
    int t;
    cin>>t;
    while(t--){
        int ans = 0;
        scanf("%d%d",&g,&l);
        if(l%g!=0){
            printf("0\n");
            continue;
        }
        l/=g;
        ans = 1;
        for(int i=0;p[i]<=l;i++)//质数分解
            if(l%p[i]==0){
                int t=0;
                while(l%p[i]==0){
                    l/=p[i];
                    t++;
                }
                ans=ans*t*6;//前面的解释。
            }
        printf("%d\n",ans);
    }
    return 0;
}

查看评论

iOS多线程-NSThread | NSOperation | GCD

本课程由扣丁学堂教学总监郭宏志老师讲授,主要学习iOS开发中多线程这一专题。内容主要包括:多线程简介和nsthread、Operation Object、Grand Gentral Dispatch等知识。
  • 2015年11月25日 16:35

hdu 4497 GCD and LCM(组合数学)

题目链接:hdu 4497 GCD and LCM 题目大意:给出三个数的最大公约数和最小公倍数,问说有多少种三个数满足。 解题思路:首先用k=l/g,剩下的数即为三个中还需要存在的因子的乘积...
  • u011328934
  • u011328934
  • 2014-04-25 23:21:54
  • 1061

HDU 4497 GCD and LCM(数学)

题目链接:Click here~~ 题意: 问有多少个三元组 {x,y,z} ,使得 gcd(x,y,z) = G && lcm(x,y,z) = L。(顺序不同视为不同方案) 解题思路: ...
  • dgq8211
  • dgq8211
  • 2013-09-03 21:39:23
  • 1776

HDU 3071 Gcd & Lcm game (线段树+素因子分解)

HDU Gcd & Lcm game (线段树+素因子分解)
  • u013790563
  • u013790563
  • 2015-10-20 10:59:23
  • 744

ZOJ 1577 GCD & LCM

题目连接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=1577 这个题,我先开始用暴力,当然不是纯暴力,当场就TLE了。。...
  • xieshimao
  • xieshimao
  • 2011-05-23 15:20:00
  • 1173

求最大公约数(gcd)和最小公倍数(lcm)算法

最大公约数:算法思想是欧几里得的辗转相除法
  • NJU_Flepped
  • NJU_Flepped
  • 2017-07-28 17:16:36
  • 319

HDU 3071-Gcd & Lcm game-线段树+素因子分解-[解题报告]HOJ

Gcd & Lcm game 问题描述 :   Tired of playing too much computer games, alpc23 is planning to play a ...
  • qq_20200047
  • qq_20200047
  • 2017-05-02 20:27:37
  • 269

HDU-5584 LCM Walk(GCD/LCM+找规律)

LCM Walk Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Total S...
  • qq_31759205
  • qq_31759205
  • 2016-09-22 23:37:17
  • 380

GCD and LCM HDU - 4497

题意:给出G,L ,求解有多少(x,y,z)使得 G=gcd(x,y,z),L=lcm(x,y,z); 思路: #include using namespace std; int main() {...
  • a7f650ebd327889c
  • a7f650ebd327889c
  • 2017-07-23 14:54:28
  • 68

HDU 4497 GCD and LCM

E - GCD and LCM Time Limit:1000MS     Memory Limit:65535KB     64bit IO Format:%I64d & %I64u Sub...
  • qq_18661257
  • qq_18661257
  • 2015-06-04 09:10:32
  • 377
    个人资料
    持之以恒
    等级:
    访问量: 2万+
    积分: 2300
    排名: 2万+
    最新评论