HDU - 4497 GCD and LCM (质数分解+组合数学)

版权声明:欢迎转载 https://blog.csdn.net/l18339702017/article/details/79952725

GCD and LCM

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)
Total Submission(s): 3002    Accepted Submission(s): 1315


Problem Description
Given two positive integers G and L, could you tell me how many solutions of (x, y, z) there are, satisfying that gcd(x, y, z) = G and lcm(x, y, z) = L? 
Note, gcd(x, y, z) means the greatest common divisor of x, y and z, while lcm(x, y, z) means the least common multiple of x, y and z. 
Note 2, (1, 2, 3) and (1, 3, 2) are two different solutions.
 

Input
First line comes an integer T (T <= 12), telling the number of test cases. 
The next T lines, each contains two positive 32-bit signed integers, G and L. 
It’s guaranteed that each answer will fit in a 32-bit signed integer.
 

Output
For each test case, print one line with the number of solutions satisfying the conditions above.
 

Sample Input
2 6 72 7 33
 

Sample Output
72 0
 

Source

题目分析:

已知:gcd(x,y,z) = g; lcm(x,y,z) = l 。因为l = x * y* z /g  所以当 l % g != 0 时,无解。

将满足条件的一组x,y,z都 除以g,得到x',y',z'。满足条件 gcd(x',y',z') = 1,同时 lcm(x',y',z')= g/l;

我们对 l/g 进行素数分解  l/g =  p1^t1+p2^t2+······+p^n+tn;

同时:

x' = p1^i1+p2^i2+······+pn^in;

y' = p1^j1+p2^j2+······+pn^jn;

z' = p1^k1+p2^k2+······+pn^kn;

则一定有: 

对于p1 ==  max(i1,j1,k1); 0 == min(i1,j1,k1) 我们假设, i1 == 0, j1 == t1, 则   k1>=0&&k1<=t1;则,当k1 == 0  或k1==t1时, i1 j1 k1 有三种组合情况  ( 0 0 ti )(0 t1 0) (t1 0 0)/(t1 t1 0) (t1 0 t1) (0 t1 t1)

对于其他的k1 ,i1 j1 k1 的组合情况有6种,所以最后产生了 6*(t1-1)+3*2 = 6*t1 种情况。

所以对每一个分解出来的质数,我们累乘 6 *ti 便是最后的组合情况



#include<bits/stdc++.h>
#define LL long long
using namespace std;

const int MAX = 1e7+10;
const int INF = 0x3fffffff;
int g,l;
int a[MAX];
int p[1000000+10];
int num = 0;

void init(){//素数打表
    memset(a,0,sizeof(a));
    memset(p,0,sizeof(p));
    for(int i=2;i<=MAX;i++){
        if(!a[i]){
            p[num++] = i;
            for(int j=2;i*j<=MAX;j++){
                a[i*j] = 1;
            }
        }
    }
}

int main(){
    init();
    int t;
    cin>>t;
    while(t--){
        int ans = 0;
        scanf("%d%d",&g,&l);
        if(l%g!=0){
            printf("0\n");
            continue;
        }
        l/=g;
        ans = 1;
        for(int i=0;p[i]<=l;i++)//质数分解
            if(l%p[i]==0){
                int t=0;
                while(l%p[i]==0){
                    l/=p[i];
                    t++;
                }
                ans=ans*t*6;//前面的解释。
            }
        printf("%d\n",ans);
    }
    return 0;
}

阅读更多
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页