Task Schedule HDU - 3572(dinic最大流)

Our geometry princess XMM has stoped her study in computational geometry to concentrate on her newly opened factory. Her factory has introduced M new machines in order to process the coming N tasks. For the i-th task, the factory has to start processing it at or after day Si, process it for Pi days, and finish the task before or at day Ei. A machine can only work on one task at a time, and each task can be processed by at most one machine at a time. However, a task can be interrupted and processed on different machines on different days.
Now she wonders whether he has a feasible schedule to finish all the tasks in time. She turns to you for help.
Input
On the first line comes an integer T(T<=20), indicating the number of test cases.

You are given two integer N(N<=500) and M(M<=200) on the first line of each test case. Then on each of next N lines are three integers Pi, Si and Ei (1<=Pi, Si, Ei<=500), which have the meaning described in the description. It is guaranteed that in a feasible schedule every task that can be finished will be done before or at its end day.
Output
For each test case, print “Case x: ” first, where x is the case number. If there exists a feasible schedule to finish all the tasks, print “Yes”, otherwise print “No”.

Print a blank line after each test case.
Sample Input
2
4 3
1 3 5
1 1 4
2 3 7
3 5 9

2 2
2 1 3
1 2 2
Sample Output
Case 1: Yes

Case 2: Yes
用ek算法无限t,学了dinic好多了

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<queue>
#define INF 0x3f3f3f3f
using namespace std;
const int maxn=1505;
const int maxx=520010;
int edge;
int to[maxx],flow[maxx],nex[maxx];
int head[maxn];

void addEdge(int v,int u,int cap)
{
    to[edge]=u,flow[edge]=cap,nex[edge]=head[v],head[v]=edge++;
    to[edge]=v,flow[edge]=0,nex[edge]=head[u],head[u]=edge++;
}
int vis[maxn];
int pre[maxn];
bool bfs(int s,int e)
{
    queue<int> que;
    pre[s]=-1;
    memset(vis,-1,sizeof(vis));
    que.push(s);
    vis[s]=0;
    while(!que.empty())
    {
        int u=que.front();
        que.pop();
        for(int i=head[u];~i;i=nex[i])
        {
            int v=to[i];
            if(vis[v]==-1&&flow[i])
            {
                vis[v]=vis[u]+1;
                if(v==e)
                    return true;
                que.push(v);
            }

        }
    }
    return false;
}
int dfs(int s,int t,int f)
{
    if(s==t||!f)
        return f;
    int r=0;
    for(int i=head[s];~i;i=nex[i])
    {
        int v=to[i];
        if(vis[v]==vis[s]+1&&flow[i])
        {
            int d=dfs(v,t,min(f,flow[i]));
            if(d>0)
            {
                flow[i]-=d;
                flow[i^1]+=d;
                r+=d;
                f-=d;
                if(!f)
                    break;
            }
        }
    }
    if(!r)
        vis[s]=INF;
    return r;
}
int maxFlow(int s ,int e)
{
    int ans=0;
    while(bfs(s,e))
        ans+=dfs(s,e,INF);
    return ans;
}

void init()
{
    memset(head,-1,sizeof(head));
    edge=0;
}
int main()
{
    int t;
    scanf("%d",&t);
    int n,m;
    int p,s,e;
    int top=-1;
    int cal=1;
    while(t--)
    {
        scanf("%d%d",&n,&m);
        int sum=0;
        init();
        for(int i=1;i<=n;i++)
        {
            scanf("%d%d%d",&p,&s,&e);
            sum+=p;
            top=max(top,e);
            addEdge(0,i,p);
            for(int j=s;j<=e;j++)
                addEdge(i,n+j,1);
        }
        for(int i=1;i<=top;i++)
            addEdge(n+i,top+n+1,m);
        if(sum==maxFlow(0,top+n+1))
            printf("Case %d: Yes\n\n",cal++);
        else
            printf("Case %d: No\n\n",cal++);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值