趣味三角——第8章——高斯的一个求和法

8 高斯的一个求和法

(Variations on a Theme by Gauss)

The solving of an astronomical problem [proposed by

the French Academy of Sciences in 1735], for which

several eminent mathematicians had demanded several

months’ time. . . was solved by the illustrious Gauss in

one hour.

(解决一个天文问题[由法国科学院于1735年提出],几位著名的数学家为此花费了几个月的时间……被杰出的高斯在一小时内给解决了。)

——Florian Cajori引自R. E. Moritz的<<On Mathematics and Mathematicians>>(论数学和数学家)第155页

有一个关于伟大的德国数学家卡尔·弗里德里希·高斯(Carl Friedrich Gauss,1777-1855年)的故事,他在上学时被老师要求对1到100的数字求和,他几乎立即就给出了正确答案 5,050。 Gauss向惊讶的老师解释说,他只是注意到通过将数字写两次,首先是从1到100,然后是从100到1,并将两个数字垂直相加,每一对加起来就是101。因为有一百个这样的数字对,我们得到100×101 = 10,100,因为这是所需总和的两倍,答案是这个的一半,即 5,050。

就像许多关于名人的故事一样,这个故事可能真的发生过,也可能没有发生过;然而,重要的是要从中吸取教训——寻找模式的重要性。这种情况下的模式是楼梯模式,我们在一端添加的内容在另一端减去:

S = 1 +  2    +   3   + ... + n

S = n + (n-1) + (n-2) + ... + 1

------------------------------------------------------------------------

2 S = (n + 1) + (n + 1) + (n + 1) + ... + (n + 1) = n(n + 1)

---------------------------- n项----------------------------------------

S = n(n + 1)/2 。--------------------------------------------(1)

有一天,我在浏览一本序列和级数手册时想起了Gauss的故事,在那里我找到了以下求和公式:[1]

sin\alpha+sin2\alpha+sin3\alpha+...+sin(n\alpha)=\frac{sin\frac{n\alpha}{2}.sin\frac{(n+1)\alpha}{2}}{sin\frac{\alpha}{2}}---------(2)

起初对于如何证明这个公式没有任何线索,我开始寻找一个模式。令我印象深刻的是等式 (1)和(2)之间形式上的相似性;事实上,等式(1)的两边分别乘以α得到 = n(n + 1) α/2,即,

α + 2α + 3α + ... + = n(n + 1) α/2

将最后一个等式“乘以(Multiplying)”(两边取正弦)“sin”并继续化简,就好像“sin”是一个普通的代数量一样,我们得到

sin (α + 2α + 3α + ... + ) = sin [n(n + 1) α/2]

如果我们在左侧打开括号,在右侧乘以和除以第二个“sin”(将其压缩在nn + 1之间),然后再乘以α/2,我们得到等式(2)!

当然,我们犯了所有可以想象的数学“sin”错误(此词没有双关语),但我们确实得到了一个正确的公式。 那么,我们能否以类似于高斯对等式(1)中和的处理方式来证明等式(2)呢? 令

S = sin α + sin 2α + ... + sin(n-1)α + sin

S = sin + sin(n-1)α + ... + sin 2α + sin α

按上下对应成对的方式求和并利用和积公式 sin\alpha+sin\beta=2sin\frac{\alpha+\beta}{2}cos\frac{\alpha-\beta}{2},我们得到

2S = 2[sin\frac{(1+n)\alpha}{2}.cos\frac{(1-n)\alpha}{2}+sin\frac{(1+n)\alpha}{2}.cos\frac{(3-n)\alpha}{2}+...+sin\frac{(n+1)\alpha}{2}.cos\frac{(n-3)\alpha}{2}+sin\frac{(n+1)\alpha}{2}.cos\frac{(n-1)\alpha}{2}=2[sin\frac{(1+n)\alpha}{2}+cos\frac{(1-n)\alpha}{2}+cos\frac{(3-n)\alpha}{2}+...+cos\frac{(n-3)\alpha}{2}+cos\frac{(n-1)\alpha}{2}]

为了消除掉余弦项中烦人的1/2,3/2,...,让我们将最后一个等式乘以sin\frac{\alpha}{2}并利用积和公式(product-to-sum) sin\alpha.cos\beta = \frac{1}{2}[sin(\alpha-\beta)+sin(\alpha+\beta)];我们得到

2Ssin\frac{\alpha}{2} = sin\frac{(n+1)\alpha}{2}[ sin\frac{n\alpha}{2}+sin(1-\frac{n}{2})\alpha+sin(-1+\frac{n}{2})\alpha]+sin(2-\frac{n}{2})\alpha+...+sin(2-\frac{n}{2})\alpha+sin(-1+\frac{n}{2})\alpha+sin(1-\frac{n}{2})\alpha+sin\frac{n\alpha}{2}

但是,sin(-1+\frac{n}{2})\alpha=-sin(1-\frac{n}{2})\alpha, 以及类似的其它项;因此,括号中的表达式是“伸缩总和(telescopic sum)”,除了第一项和最后一项之外,其它项都抵消掉了(cancel out)。因此,我们有

2Ssin\frac{\alpha}{2}=2sin\frac{(n+1)\alpha}{2}sin\frac{n\alpha}{2}

或者

S=\frac{sin\frac{(n+1)\alpha}{2}sin\frac{n\alpha}{2}}{sin\frac{\alpha}{2}}

这就是我们想要证明的公式。

可以用类似的方式证明余弦求和的类似公式:[2]

cos \alpha + cos 2\alpha + cos 3\alpha + ...+ cos n\alpha = \frac{cos\frac{(n+1)\alpha}{2}sin\frac{n\alpha}{2}}{sin\frac{\alpha}{2}}--------(3)

如果我们现在将等式(2)除以等式(3),我们将得到漂亮的公式

tan\frac{(n+1)\alpha}{2}=\frac{sin\alpha+sin2\alpha+sin3\alpha+...+sinn\alpha}{cos\alpha+cos2\alpha+cos3\alpha+...+cosn\alpha}-----(4)

但这还没有结束。遵循每个三角函数公式最终都来自几何的想法,我们转向图51。从原点开始(基于我们的目的,我们标为P_{0})我们画了一条单位长度的线段P_{0}P_{1},使其与正向x轴构成角α。在P_{1}点我们画了第二条单位长的线段,使其与第一条线段构成角α,因此,与x轴构成的角为2α。持续n次这样的操作,我们来到点P_{n},我们将其坐标记为XY。很显然,Xn条线段的水平投影之和,而Yn条线段的垂直投影之和,因此,我们有

X = cos α + cos 2α + cos 3α + ...+ cos

Y = sin α + sin 2α + sin 3α + ... + sin ------------------------(5)

-------图51 S = sin α + sin 2α + ... + sin(n-1)α + sin 的几何构成-------------

现在,P_{i} 点位于一个规则的多边形上,且这个规则的多边形(polygon)内接于(inscribed)以O为圆心半径r为的圆中。每条线段P_{i-1}P_{i}正对向着一个以O点为顶点大小为α的角,因此,线段P_{0}P_{n}正对向着一个以O点为顶点大小为的角。但是这条线段是连接对角线(diagonal) P_{0} 和 P_{n};我们将其记为d。在这个等腰三角形(isosceles) P_{0}OP_{n}中,我们有

d=2rsin\frac{n\alpha}{2} ,

而在等腰三角形P_{0}OP_{1}中,我们有

1=2rsin\frac{\alpha}{2} 。

在这些等式中消掉r,我们得到

d = \frac{sin\frac{n\alpha}{2}}{sin\frac{\alpha}{2}}   。

为了求得线段P_{0}P_{n}的垂直和水平投影,我们必须求得它与x轴构成的这个角。这个角为α + β,其中\angle P_1P_0P_n。现在,角β正对向的弦P_1Pn内接于圆中,因此,它等于同一弦所正对向的圆心角的一半,即,等于(n-1)α/2。因此,α + β  = α + (n-1)α/2 = (n+1)α/2 。

因此

X=dcos[\frac{(n+1)\alpha}{2}]=\frac{cos\frac{(n+1)\alpha}{2}sin\frac{n\alpha}{2}}{sin\frac{\alpha}{2}}

和-----------------------------------------------------------(6)

Y=dsin[\frac{(n+1)\alpha}{2}]=\frac{sin\frac{(n+1)\alpha}{2}sin\frac{n\alpha}{2}}{sin\frac{\alpha}{2}}

如果我们将等式(5)中的 XY 的表达式代入等式(6),我们得到等式(2)和(3)。

假如我们将每条线段P_{i-1}P_{i}看成是从P_{i-1}P_{i} 的向量, 则线段P_{0}P_{n}是它们的向量和。那么,等式(2)和(3)表示各个线段的(垂直或水平)投影之和等于它们的向量和的(垂直或水平)投影。这表明投影是一种“线性操作(linear operation)”——即遵循分配律(distributive law)p(u + v) = p(u) + p(v)的一种操作,其中,p表示“……的投影”, uv表示任意两个向量——就像所有的线性操作——行为和普通乘法无异。我们可以用求和的“高斯法”来证明其他的三角求和公式。 这里有一些例子:

sin\alpha+sin3\alpha+sin5\alpha+...+sin (2n - 1)\alpha =\frac {sin^{2}n\alpha}{sin\alpha}------(7)

cos\alpha+cos3\alpha+cos5\alpha+...+cos (2n - 1)\alpha =\frac {sin2n\alpha}{2sin\alpha}------(8)

sin\frac{\pi }{n}+sin\frac{2\pi }{n}+...+sin\frac{n\pi }{n}=cot\frac{\pi }{2n}-------------(9)

cos\frac{\pi }{n}+cos\frac{2\pi }{n}+...+cos\frac{n\pi }{n}=-1-----------------(10)

cos\frac{\pi }{2n+1}+cos\frac{3\pi }{2n+1}+...+cos\frac{(2n-1)\pi }{2n+1}=\frac{1}{2}----------(11)

最后两个分别是等式(3)和(8)的特例;它们非常出色,因为每个中的总和与n无关。

匈牙利数学Lip´ot Fej´er (1880–1959)结合他在傅立叶级数求和方面的工作对三角求和进行了研究,我们将在第 15 章中回到这个主题。

注释和资料来源:

1. <<Summation of Series>>(序列求和),由L.B.W. Jolley收集整理(1925初版; New York: Dover, 1961重印),序列号147。

2. 两个公式也可以通过取几何级数和 e^{ix}+e^{2ix}+...+e^{nix} 的实部和虚部来证明,其中i=\sqrt{-1};参见Richard Courant,<<Differential and Integral Calculus>>(微分与积分)( 1934初版;London: Blackie & Son, 1956重印),卷1,第436页。

内容来源:

<<Trigonometric Delights>> 作者:Eli Maor

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
资源包主要包含以下内容: ASP项目源码:每个资源包中都包含完整的ASP项目源码,这些源码采用了经典的ASP技术开发,结构清晰、注释详细,帮助用户轻松理解整个项目的逻辑和实现方式。通过这些源码,用户可以学习到ASP的基本语、服务器端脚本编写方、数据库操作、用户权限管理等关键技术。 数据库设计文件:为了方便用户更好地理解系统的后台逻辑,每个项目中都附带了完整的数据库设计文件。这些文件通常包括数据库结构图、数据表设计文档,以及示例数据SQL脚本。用户可以通过这些文件快速搭建项目所需的数据库环境,并了解各个数据表之间的关系和作用。 详细的开发文档:每个资源包都附有详细的开发文档,文档内容包括项目背景介绍、功能模块说明、系统流程图、用户界面设计以及关键代码解析等。这些文档为用户提供了深入的学习材料,使得即便是从零开始的开发者也能逐步掌握项目开发的全过程。 项目演示与使用指南:为帮助用户更好地理解和使用这些ASP项目,每个资源包中都包含项目的演示文件和使用指南。演示文件通常以视频或图文形式展示项目的主要功能和操作流程,使用指南则详细说明了如何配置开发环境、部署项目以及常见问题的解决方。 毕业设计参考:对于正在准备毕业设计的学生来说,这些资源包是绝佳的参考材料。每个项目不仅功能完善、结构清晰,还符合常见的毕业设计要求和标准。通过这些项目,学生可以学习到如何从零开始构建一个完整的Web系统,并积累丰富的项目经验。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值