理解数学概念——同伦和简单连通域

1.  同伦(homotopy)

1.1  homotopy[hɒməʊˈtɒpi] n.

(1) <<The Oxford English Dictionary>>第二版

[数学专用术语,这个词由德语homotopie改造而来,(Dehn & Heegaard Analysis Situs in Encykl.d.math.Wiss.(1907) III.I.I.164页):see prec. and -\rm{Y}^{3}. ]

a. A mapping that deforms one path continuously into another in such a way that all the intermediate paths lie within the topological space of which the two given paths are subspaces(see quot. 1970).

这是一种映射,已知两条路径,它将其中一条路径经过连续变形(改变其外形)变为另一条路径,使得所有中间路径都位于拓扑空间内,其中两个给定路径是该拓扑空间的子空间(参见引用1970)。

b. The property of being homotopic.

作为同伦的属性本身。

(2) 词源构成

homotopy 由“homo-”+ “-topy”构成:

homo-”的词义为“same, the same, equal, like(同,相同,相等,相似)”;

-topy”的词义为“location,position(位置)”,是一个名词构词后缀,来自新拉丁语“-topia”(来自希腊语),词义为“way,place(方式,位置)”,由“topos”(词义为“place(位置,地点)”) + “-ia,-y”构成。

而在汉语中,“倫(伦)”的本意是“辈;同类”。所以,“同伦”应理解为“具有相同的某种属性”的意思,同伦这个汉语只体现了这个数学概念的一半意义,另一半意义并没有体现出来。

1.2  homotopic[hɒməʊˈtɒpik] adj.

名词homotopy对应的形容词。

1.3  同伦的数学解释

         在拓扑学中(topology,研究“位置、空间、区域”的学问),对于两个连续函数,如果其中一个可以在一个拓扑空间经过连续变换变形为另一个拓扑空间中的另一个函数,则称这两个拓扑空间是同伦的(homotopic,来自古希腊词“ὁμός homós”(词义为“same, similar (相同,类似)”和“τόπος tópos”(词义为“place(地位,位置)”))。而这种变形的行为,称为两个函数之间的同伦(homotopy)。同伦的一个显著用途是用于定义同伦群(homotopy groups)和上同伦群(cohomotopy groups)——代数拓扑中的重要不变量。

令 \gamma_{0}  和 \gamma_{1} 为开集Ω 中的两条具有相同端点的曲线。因此,若 \gamma_{0}(t) 和 \gamma_{1}(t)  是两个定义于[a,b] 上的参数化表达式,则我们有 

\gamma_{0}(a) = \gamma_{1}(a) = \alpha   和   \gamma_{0}(b) = \gamma_{1}(b) = \beta 。

若对于每一个 0 ≤ s ≤ 1 ,存在一条曲线 \gamma_{s} \subset \Omega ,可以用定义于 [a,b] 上的 \gamma_s(t) 参数化,使得对每一个 s ,有 

\gamma_s(a) = \alpha 和 \gamma_s(b) = \beta ,

以及对于任意 t∈[a,b],有

\gamma_{s}(t)\left . \right |_{s=0} = \gamma_{0}(t)  和 \gamma_{s}(t)\left . \right |_{s=1} = \gamma_{1}(t)  ,

则称这两条曲线在 Ω 中是同伦的(homotopic)。此外,\gamma_{s}(t) 在 s∈[0,1] 和 t∈[a,b] 中应当是联合连续的。

    大致地讲,对于两条曲线,若其中一条曲线可以通过连续变换变形为另一条曲线而不离开Ω,则这两条曲线是同伦的(如图1所示)

---------------------------------------------------图1. 曲线的同伦---------------------------------------------

---------------------------------------------------图2. 上面显示的两条虚线路径相对于它们的端点是同伦的。 该动画代表一种可能的同伦。-----------------------------------------------------------------------------

---------------------------------------------------图3. R^{3}  中环面的两个嵌入之间的同伦:作为“甜甜圈的表面”和“咖啡杯的表面”。 这也是同位素的一个例子。---------------------------------------------------------

2.  简单连通域(simply connected region)(一个拓扑学概念)

    如果复平面上的一个区域内的任何简单闭合曲线(译注:除了端点处重合,闭合曲线的其它部分不相交)可以连续变形为一点而不离开该区域,则该区域是简单连接的。这意味着该区域中没有任何“洞(holes)”或“把手(handles)”,因为曲线始终可以收缩到一个点而不跨越边界。这是该定义的直观含义,可以通过想象一根绳子在该区域内收缩来形象化。连续变形的过程称为同伦,并由参数化曲线与点或另一条曲线之间可能的循环的函数表示。这个概念也可以使用基本群来描述,但它更高级。而单纯一个连通域可以有多个组成部分或者孔。简单连通域有边界,边界是简单连通域的一部分。

    简单连通区域在许多数学领域都很重要,包括拓扑、复分析和微分几何。它们提供了一种对不同类型的空间进行分类和研究的方法,并可以帮助解决与这些领域相关的问题

有几种不同的方法可以确定一个区域是否是简单连接的。 一种方法是检查是否有任何循环可以连续收缩到单个点而不离开该区域。另一种方法是使用代数拓扑,其中涉及查看该区域的基本群。如果基本群是平凡的(意味着它只包含单位元素),则该区域是单连通的。例如,下面的方法:

    对于复平面上的区域Ω ,若Ω 中任意两条具有相同端点的成对曲线是同伦的,则此区域Ω是简单连通的(simply connected)

电力系统潮流计算是电力工程领域的一项核心技术,主要用于分析电力网络在稳态运行条件下的电压、电流、功率分布等运行状态。MATLAB凭借其强大的数值计算功能和便捷的编程环境,成为电力系统潮流计算的重要工具,它提供了丰富的数学函数库,能够高效地处理复杂的电力系统计算任务。 本压缩包中的“潮流计算MATLAB程序”是一套完整的电力系统潮流计算解决方案,主要包括以下几个关键部分: 数据输入模块:该模块负责读取电力系统的网络数据,包括发电机、线路、变压器等设备的参数。这些数据通常来源于IEEE测试系统或实际电网,并以特定格式存储。 网络建模:基于输入数据,程序构建电力系统的数学模型,主要涉及节点功率平衡方程的建立。每个节点的注入功率等于其消耗功率,对于发电机节点还需考虑其有功和无功功率的调节能力。 迭代算法:潮流计算的核心是求解非线性方程组,常见的算法有牛顿-拉夫森法和高斯-塞德尔法。MATLAB的优化工具箱可辅助实现这些算法,通过迭代更新节点电压和支路电流,直至满足收敛条件。 结果输出:计算完成后,程序能够输出关键性能指标,如节点电压幅值和相角、支路功率流、发电机的有功无功功率等。这些信息对于分析电网运行状态和制定调度策略具有重要意义。 可视化功能:程序可能包含图形用户界面(GUI),用于展示计算结果,例如绘制网络拓扑图并标注节点电压和支路功率,便于用户直观理解计算结果。 错误处理与调试:良好的程序设计应包含错误检测和处理机制,以应对不合理数据或计算过程中出现的问题,并给出适当的提示。 对于电力系统分析课程的学生来说,这个MATLAB程序是一个宝贵的学习资源。它不仅有助于学生掌握电力系统的理论知识,还能让他们了解如何将理论应用于实践,通过MATLAB解决实际问题。尽管该程序是作者一周内完成的,可能存在一些未完善之处,但使用者可以在参考的基础上逐步改进和完善,使其更贴合自身需求。 总之
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值