集合论之集合的表示法

目录

1. 说明

2. 常用表示法

2.1  枚举法(Roster Notation)

2.2  构建法(Set-builder notation)

3. 其它表示法


1. 说明

要表示一个集合,可以直接列出其元素,或者提供一种可以唯一地刻画其元素的方当。

2. 常用表示法

2.1  枚举法(Roster Notation)

         列表法(poster notation)或枚举法(enumeration notation)是由 Ernst Zermelo (德国数学家)于 1908 年引入的一种记法。方法是在一对花括号(大括号)间逐个列出集合的元素,元素之间用逗号分隔。例如,{1,2,3,4} ,{蓝,白,红} 。

当生成所有集合元素有明确的模式时,可以使用省略号来缩写符号。例如,

    对于不大于 1000 的正整数,可以写成

    {1 , 2 , 3 , … ,1000 }

    省略号还允许将枚举扩展至某些无限集。例如,

    对于所有整数的集合,可以写成

    {… ,-3, -2 ,-1 ,0, 1, 2 , 3 , … } 或 {0 ,-1, 1 ,-2 ,2, -3 , 3 , … } 。

2.2  构建法(Set-builder notation)

    集合构建法将集合指定为满足某些逻辑公式的所有元素的集合更确切地说 P(x) 是一个取决于某个变量 x 的逻辑公式其依据这个变量 x的值计算出真或假则用

{ x: P(x) }

{ x | P(x) }

表示使 P(x) 为真的所有 x 的集合。例如,一个集合 F 可以表示如下:

F = { n | n 是一个整数,且 0 ≤ n ≤ 19 } 。

在这种记法中,垂直条“|”可读作“使得(such that)”,而整个公式可读作“F是使得 n 是一个位于范围 0(含)至19(含)的所有整数 n 的集合”。

    一些逻辑公式(例如,S 是一个集合且 S S ) 不能用于构建法表示,因为不存在任何集合,其元素可以用公式来描述。有几种方法可以避免这个问题。可以证明公式定义了一个集合;这通常几乎是直接的,但可能非常困难。

    我们可以引入一个一定包含所有具体集合的元素的更大集合U,并记为

{ x: x U }

{ x U | }

我们也可以一次性定义 U ⁠,并遵循这样的惯例:符号竖线左侧出现的每个变量都代表 U ⁠ 的一个元素。这相当于说 ⁠ x U  在集合构造器符号中是隐式的。在这种情况下,U ⁠ 通常称为论域(domain of discourse)或全集(Universe)。例如,按照小写拉丁字母可以表示实数而不能表示其他任何数的惯例,表达式

{ x | x ∉ ℚ }

{ x ∈ℝ | x ∉ ℚ }

其定义了非比数(irrational numbers)。

3. 其它表示法

    这些表示法比较少见,但有些图书作者会这样表示。在不引起混淆的情况下,第一项为元素表达式,逗号后面写满足的条件。例如,二维平面上的上半平面:

\mathbb{R}^{2}_{+} = \left \{ z = x + iy , x \in \mathbb{R} ,y > 0 \right \}  。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值