目录
1. 说明
要表示一个集合,可以直接列出其元素,或者提供一种可以唯一地刻画其元素的方当。
2. 常用表示法
2.1 枚举法(Roster Notation)
列表法(poster notation)或枚举法(enumeration notation)是由 Ernst Zermelo (德国数学家)于 1908 年引入的一种记法。方法是在一对花括号(大括号)间逐个列出集合的元素,元素之间用逗号分隔。例如,{1,2,3,4} ,{蓝,白,红} 。
当生成所有集合元素有明确的模式时,可以使用省略号来缩写符号。例如,
对于不大于 1000 的正整数,可以写成
{1 , 2 , 3 , … ,1000 }
省略号还允许将枚举扩展至某些无限集。例如,
对于所有整数的集合,可以写成
{… ,-3, -2 ,-1 ,0, 1, 2 , 3 , … } 或 {0 ,-1, 1 ,-2 ,2, -3 , 3 , … } 。
2.2 构建法(Set-builder notation)
集合构建法将集合指定为满足某些逻辑公式的所有元素的集合。更确切地说,若 P(x) 是一个取决于某个变量 x 的逻辑公式,其依据这个变量 x的值计算出真或假,则用
{ x: P(x) }
或
{ x | P(x) }
表示使 P(x) 为真的所有 x 的集合。例如,一个集合 F 可以表示如下:
F = { n | n 是一个整数,且 0 ≤ n ≤ 19 } 。
在这种记法中,垂直条“|”可读作“使得(such that)”,而整个公式可读作“F是使得 n 是一个位于范围 0(含)至19(含)的所有整数 n 的集合”。
一些逻辑公式(例如,S 是一个集合且 S ∉ S ) 不能用于构建法表示,因为不存在任何集合,其元素可以用公式来描述。有几种方法可以避免这个问题。可以证明公式定义了一个集合;这通常几乎是直接的,但可能非常困难。
我们可以引入一个一定包含所有具体集合的元素的更大集合U,并记为
{ x: x ∈U }
或
{ x ∈U | … }
我们也可以一次性定义 U ,并遵循这样的惯例:符号竖线左侧出现的每个变量都代表 U 的一个元素。这相当于说 x ∈U 在集合构造器符号中是隐式的。在这种情况下,U 通常称为论域(domain of discourse)或全集(Universe)。例如,按照小写拉丁字母可以表示实数而不能表示其他任何数的惯例,表达式
{ x | x ∉ ℚ }
或
{ x ∈ℝ | x ∉ ℚ }
其定义了非比数(irrational numbers)。
3. 其它表示法
这些表示法比较少见,但有些图书作者会这样表示。在不引起混淆的情况下,第一项为元素表达式,逗号后面写满足的条件。例如,二维平面上的上半平面:
。