三、特征提取、特征预处理

本文详细探讨了Electroencephalogram(EEG)数据中的特征提取技术,包括统计学特征、时域和频域分析,以及针对EEG特有的处理方法。此外,还介绍了特征预处理步骤,如归一化、标准化、特征二值化、编码和处理缺失值与样本不平衡问题的Python实现。
摘要由CSDN通过智能技术生成

1_特征提取

1.1 统计学特征

1.2 时域

1.3 频域

1.4 其他EEG特殊特征

2_特征提取预处理(理论及Python实现)

2.1 归一化

2.2 标准化

2.3 特征二值化

2.4 特征编码

2.5 缺失值处理

2.6 样本不平衡问题

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值